Активный реактивный ток. Учёт реактивной мощности в стандартных договорах на поставку электроэнергии

Как известно, генератор переменного тока вырабатывает два вида электрической энергии — активную и реактивную. Активная энергия расходуется в электрических печах, лампах, электрических машинах и иных потребителях, переходя в другие виды энергии — тепловую, световую, механическую. Реактивная же энергия не расходуется потребителями и возвращается по питающей линии к генератору. Это влечет рост тока, протекающего по ЭС, и соответственно требует увеличения площади их сечения.

Компенсация реактивной мощности

В электрических цепях, содержащих комбинированные сопротивления (нагрузку), в частности, активную (лампы накаливания, электронагреватель и др.) и индуктивную (электродвигатели, распределительные трансформаторы, сварочное оборудование, люминесцентные лампы и др.) составляющие, общую мощность, забираемую от сети, можно выразить следующей векторной диаграммой:

Отставание тока по фазе от напряжения в индуктивных элементах обуславливает интервалы времени (см. рис.), когда напряжение и ток имеют противоположные знаки: напряжение положительно, а ток отрицателен и наоборот. В эти моменты мощность не потребляется нагрузкой, а подается обратно по сети в сторону генератора. При этом электроэнергия, запасаемая в каждом индуктивном элементе, распространяется по сети, не рассеиваясь в активных элементах, а совершая колебательные движения (от нагрузки к генератору и обратно). Соответствующую мощность называют реактивной.

Полная мощность складывается из активной мощности, совершающей полезную работу, и реактивной мощности, расходуемой на создание магнитных полей и создающей дополнительную нагрузку на силовые линии питания. Соотношение между полной и активной мощностью, выраженное через косинус угла между их векторами, называется коэффициентом (фактором) мощности.

Активная энергия преобразуется в полезную - механическую, тепловую и др. энергии. Реактивная энергия не связана с выполнением полезной работы, однако она необходима для создания электромагнитного поля, наличие которого является необходимым условием для работы электродвигателей и трансформаторов. Потребление реактивной мощности от энергоснабжающей организации нецелесообразно, так как приводит к увеличению мощности генераторов, трансформаторов, сечения подводящих кабелей (снижение пропускной способности), а так же повышению активных потерь и падению напряжения (из-за увеличения реактивной составляющей тока питающей сети). Поэтому реактивную мощность необходимо получать (генерировать) непосредственно у потребителя. Эту функцию выполняют установки компенсации реактивной мощности (КРМ) , основными элементами которых являются конденсаторы.

Установки КРМ - электроприемники с емкостным током, которые при работе формируют опережающую реактивную мощность (ток по фазе опережает напряжение) для компенсации отстающей реактивной мощности, генерируемой индуктивной нагрузкой.

Реактивная мощность Q пропорциональна реактивному току, протекающему через индуктивный элемент:
Q = U x IL,
где IL - реактивный (индуктивный) ток, U - напряжение сети. Таким образом, полный ток, питающий нагрузку, складывается из активной и индуктивной составляющих:
I = IR + IL.
Для снижения доли реактивного тока в системе «генератор-нагрузка» параллельно нагрузке подключают компенсаторы (установки КРМ). Реактивная мощность при этом уже не перемещается между генератором и нагрузкой, а совершает локальные колебания между реактивными элементами - индуктивными обмотками нагрузки и компенсатором. Такая компенсация реактивной мощности (снижение индуктивного тока в системе «генератор-нагрузка») позволяет, в частности, передать в нагрузку большую активную мощность при той же номинальной полной мощности генератора.

Для чего необходима компенсация реактивной мощности?

Основной нагрузкой в промышленных электросетях являются асинхронные электродвигатели и распределительные трансформаторы. Эта индуктивная нагрузка в процессе работы является источником реактивной электроэнергии (реактивной мощности), которая совершает колебательные движения между нагрузкой и источником (генератором), не связана с выполнением полезной работы, а расходуется на создание электромагнитных полей и создает дополнительную нагрузку на силовые линии питания.
Реактивная мощность характеризуется задержкой (в индуктивных элементах ток по фазе отстает от напряжения) между синусоидами фаз напряжения и тока сети. Показателем потребления реактивной мощности является коэффициент мощности (КМ) , численно равный косинусу угла (ф) между током и напряжением. КМ потребителя определяется как отношение потребляемой активной мощности к полной, действительно взятой из сети, т.е.: cos(ф) = P/S. Этим коэффициентом принято характеризовать уровень реактивной мощности двигателей, генераторов и сети предприятия в целом. Чем ближе значение cos(ф) к единице, тем меньше доля взятой из сети реактивной мощности.

Пример: при cos(ф) = 1 для передачи 500 KW в сети переменного тока 400 V необходим ток значением 722 А. Для передачи той же активной мощности при коэффициенте cos(ф) = 0,6 значение тока повышается до 1203 А.

  • возникают дополнительные потери в проводниках вследствие увеличения тока;
  • снижается пропускная способность распределительной сети;
  • отклоняется напряжение сети от номинала (падение напряжения из-за увеличения реактивной составляющей тока питающей сети).

Все сказанное выше является основной причиной того, что предприятия электроснабжения требуют от потребителей снижения доли реактивной мощности в сети.
Решением данной проблемы является компенсация реактивной мощности - важное и необходимое условие экономичного и надежного функционирования системы электроснабжения предприятия. Эту функцию выполняют устройства компенсации реактивной мощности (КРМ-конденсаторные установки) , основными элементами которых являются конденсаторы.

Правильная компенсация реактивной мощности позволяет:

  • снизить общие расходы на электроэнергию;
  • уменьшить нагрузку элементов распределительной сети (подводящих линий, трансформаторов и распределительных устройств), тем самым продлевая их срок службы;
  • снизить тепловые потери тока и расходы на электроэнергию;
  • снизить влияние высших гармоник;
  • подавить сетевые помехи, снизить несимметрию фаз;
  • добиться большей надежности и экономичности распределительных сетей.

Кроме того, в существующих сетях она позволяет:

  • исключить генерацию реактивной энергии в сеть в часы минимальной нагрузки;
  • снизить расходы на ремонт и обновление парка электрооборудования;
  • увеличить пропускную способность системы электроснабжения потребителя, что позволит подключить дополнительные нагрузки без увеличения стоимости сетей;
  • обеспечить получение информации о параметрах и состоянии сети,

а во вновь создаваемых сетях - уменьшить мощность подстанций и сечения кабельных линий, что снизит их стоимость.

Где необходима компенсация реактивной мощности

Одним из основных направлений сокращения потерь электроэнергии и повышения эффективности электроустановок промышленных предприятий является компенсация реактивной мощностис одновременным повышением качества электроэнергии непосредственно в сетях предприятий. Чем ниже коэффициент мощности cos(ф) при одной и той же активной нагрузке электроприемников, тем больше потери мощности и падение напряжения в элементах систем электроснабжения. Поэтому следует всегда стремиться к получению наибольшего значения коэффициента мощности.
Для решения этой задачи применяются компенсирующие устройства, называемые установками компенсации реактивной мощности (КРМ) , основными элементами которых являются конденсаторы. Применение установок КРМ позволяет исключить оплату за потребление из сети и генерацию в сеть реактивной мощности, при этом суммы платежа за потребляемую энергию, определяемые тарифами энергосистемы, значительно сокращаются.
Применение установок КРМ эффективно на предприятиях, где используются станки, компрессоры, насосы, сварочные трансформаторы, электропечи, электролизные установки и прочие потребители энергии с резкопеременной нагрузкой, то есть на производствах металлургической, горнодобывающей, пищевой промышленности, в машиностроении, деревообработке и производстве стройматериалов - то есть везде, где из-за специфики производственных и технологических процессов значение cos(ф) колеблется от 0,5 до 0,8.

Применение установок компенсации реактивной мощности КРМ необходимо на предприятих, использующих:

  • Асинхронные двигатели (cos(ф) ~ 0.7);
  • Асинхронные двигатели, при неполной загрузке (cos(ф) ~ 0.5);
  • Выпрямительные электролизные установки (cos(ф) ~ 0.6);
  • Электродуговые печи (cos(ф) ~ 0.6);
  • Индукционные печи (cos(ф) ~ 0.2-0.6);
  • Водяные насосы (cos(ф) ~ 0.8);
  • Компрессоры (cos(ф) ~ 0.7);
  • Машины, станки (cos(ф) ~ 0.5);
  • Сварочные трансформаторы (cos(ф) ~ 0.4);
  • Лампы дневного света (cos(ф) ~ 0.5-0.6).

Снижение величины полной мощности при компенсации реактивной мощности:

* данные получены на основании обобщенного опыта эксплуатации установок КРМ

Существенным для практики является тот факт, что реактивная нагрузка индуктивного характера может быть скомпенсирована включением параллельно ей емкостной нагрузки. При внимательном изучении это явление становится очевидным: отстающий ток индуктивной ветви такой цепи компенсируется опережающим током ветви емкостной. При надлежащем подборе емкости отставание тока в цепи может быть почти полностью скомпенсировано (cos f = 1). Конденсаторы, включаемые параллельно индуктивной нагрузке для компенсации ее РМ, называют компенсирующими, или косинусными (поскольку служат для повышения cos f ЭУ).

Методы компенсации

Компенсация РМ может быть индивидуальной (местной), когда конденсаторы монтируются в непосредственной близости от каждого потребителя и групповой с использованием специальных конденсаторных установок, располагаемых обычно вблизи трансформаторных подстанций, распределительных пунктов и т.п., присоединяемых к началу каждой групповой линии. Такой метод целесообразен для крупных ЭУ.

Для чего нужна компенсация реактивной мощности в распределительных электрических сетях

Активная мощность вырабатывается только генераторами электрических станций. Реактивная мощность вырабатывается генераторами электрических станций (синхронными двигателями станций в режиме перевозбуждения), а также компенсирующими устройствами (например, батареями конденсаторов).
Передача реактивной мощности от генераторов по электрической сети к потребителям (индукционным приемникам энергии) вызывает в сети затраты активной мощности в виде потерь и дополнительно загружает элементы электрической сети, снижая их общую пропускную способность.
Так, например, генератор с номинальной мощностью 1250 кВА при номинальном коэффициенте мощности cosφ=0,8 может отдать потребителю активную мощность, равную 1250×0,8=1000 кВт. Если генератор будет работать с соsφ=0,6 , то в сеть будет отдаваться активная мощность равная 1250×0,6=750 кВт (активная мощность недоиспользуется на четверть).
Поэтому, как правило, увеличение выдачи реактивной мощности генераторами станций с целью доставки ее потребителям нецелесообразно. Наибольший экономический эффект достигается при размещении компенсирующих устройств (генерации реактивной мощности) вблизи потребляющих реактивную мощность индукционных приемников энергии.

Индукционные приемники энергии или потребители реактивной мощности

  • Трансформатор. Он является одним из основных звеньев в передаче электроэнергии от источника электрической энергии до потребителя и предназначен для преобразования посредством электромагнитной индукции системы переменного тока одного напряжения в систему переменного тока другого напряжения при неизменной частоте и без существенных потерь мощности.
  • Асинхронный двигатель. Асинхронные двигатели наряду с активной мощностью потребляют до 65% реактивной мощности энергосистемы.
  • Индукционные печи. Это крупные электроприемники, требующие для своего действия большое количество реактивной мощности. Индукционные печи промышленной частоты часто используются для плавки металлов.
  • Преобразовательные установки, преобразующие переменный ток в постоянный при помощи выпрямителей. Данные установки широко применяются на промышленных предприятиях и железнодорожном транспорте, использующем постоянный ток.
  • Социально-бытовая сфера. Увеличение числа различных электроприводов, стабилизирующих и преобразовательных устройств, применение полупроводниковых преобразователей приводит к росту потребляемой реактивной мощности, а это, в свою очередь, влияет на работу других электроприемников, сокращает срок их службы, создает дополнительные потери электроэнергии. Современные люминесцентные (так называемые энергосберегающие) светильники, которые все шире применяются в квартирах и офисах, также являются потребителями реактивной мощности.

К чему приводит отсутствие компенсации реактивной мощности у абонентов

  • У трансформаторов при уменьшении cosφ уменьшается пропускная способность по активной мощности вследствие увеличения реактивной нагрузки.
  • Увеличение полной мощности при снижении cosφ приводит к возрастанию тока и, следовательно, потерям мощности, которые пропорциональны квадрату тока.
  • Увеличение тока требует повышения сечений проводов и кабелей, растут капитальные затраты на электрические сети.
  • Увеличение тока при снижении cosφ ведет к увеличению потери напряжения во всех звеньях энергосистемы, что вызывает понижение напряжения у потребителей.
  • На промышленных предприятиях понижение напряжения нарушает нормальную работу электроприемников. Снижается частота вращения электродвигателей, что приводит к снижению производительности рабочих машин, уменьшается производительность электрических печей, ухудшается качество сварки, снижается световой поток ламп, уменьшается пропускная способность заводских электрических сетей, а как итог - ухудшается качество продукции.

Электрическия система вырабатывает полную энергию, которая делится на полезную, или активную и остаточную под названием реактивная энергия. О том, что это такое и как ведётся её учёт, расскажет статья.

Остаточная энергия: что это такое?

Все электрические машины представлены реактивными и активными элементами. Именно они и потребляют электрическую энергию. К ним относят реактивные соединения кабелей, конденсаторные и трансформаторные обмотки.

В процессе течения переменного тока на этих сопротивлениях индексируются реактивные электродвижущие силы, которые создают реактивный ток.

В установках и приборах, создающих переменный ток, используется реактивная энергия в электросети, которая создает магнитное поле электрического поля.

Влияние индуктивного сопротивления на создание магнитного поля

Все приборы, которые питаются от электросети, имеют индуктивное сопротивление. Именно благодаря ему знаки тока и напряжения противоположны. Например, напряжение имеет отрицательный знак, а ток - положительный, или наоборот.

В это время электроэнергия, создаваемая в индуктивном элементе про запас, колебательными движениями исходит по сети за счёт нагрузки от генератора и обратно. Этот процесс и называется которая создает магнитное поле электрического поля.

Для чего необходима реактивная энергия?

Можно сказать, что она направлена на регулировку изменений, которые вызывает в сети электрический ток. Сюда относят:

  • поддержка магнитного поля во время индуктивности в цепи;
  • при наличии конденсаторов и проводов поддержка их заряда.


Проблемы при выработке реактивной мощности

Если в сети существует большая доля выработки реактивной мощности, то приходится:

  • повышать мощность силовых аппаратов, которые предназначены для преобразования электрической энергии одного значения напряжения в электрическую энергию другого значения напряжения;
  • увеличивать сечение кабелей;
  • бороться с ростом потери мощности в силовых аппаратах и линиях передач;
  • увеличивать плату за потребление электроэнергии;
  • бороться с потерей напряжения в сети.

В чём разница между активной и реактивной энергией?

Люди привыкли платить за ту электроэнергию, которую они потребляют. Они оплачивают энергию, используемую для обогрева помещения, приготовления еды, нагревания воды в ванной комнате (кто пользуется индивидуальными водонагревателями) и другую полезную электрическую энергию. Именно она и называется активной.

Как и в общей теории колебательных движений, в теории переменных токов большую пользу приносят векторные диаграммы. Очевидно, что синусоидально изменяющуюся электродвижущую силу

можно изобразить как проекцию на ось ординат вращающегося против часовой стрелки с угловой скоростью вектора, длина которого равна и начальное положение которого в момент совпадало с осью абсцисс.

Спросим себя, как изобразится в векторной диаграмме ток, протекающий под влиянием синусоидальной электродвижущей силы через катушку, обладающую индуктивностью

Рис. 341. Векторная диаграмма для случая Индуктивного сопротивления.

Рис. 342. Векторная диаграмма для случая емкостного сопротивления.

Мы видели, что ток в этом случае отстает на четверть периода от напряжения. Отставание на четверть периода представится в векторной диаграмме отставанием вектора тока на таким образом, вектор «индуктивного» тока будет перпендикулярен к вектору напряжения (рис. 341), отставая от него на 90. Величина этого вектора

Если мы имеем дело с прохождением переменного тока через конденсатор, то ток опережает электродвижущую силу на четверть периода. Это значит, что вектор, изображающий «емкостный» ток, должен опережать вектор напряжения на (рис. 342). Величина этого вектора, как мы видели выше, определяется соотношением

Для случая активного омического сопротивления ток совпадает по фазе с напряжением. Это значит, что вектор тока совпадает по направлению с вектором напряжения, Величина его, конечно, определяется законом Ома.

Ток, вектор которого совпадает с вектором напряжения, называют активным током. Токи же, векторы которых отстают от вектора напряжения или опережают его на называют реактивными токами. Выбор такого названия объясняется тем, что именно активные токи определяют потребление мощности цепью переменного тока, тогда как на возбуждение реактивного тока (т. е. тока, который отстает от напряжения или опережает его на четверть периода) генератор расходует в течение каждой четверти периода столько же энергии, сколько в следующую четверть периода этот реактивный ток отдает генератору обратно (см. рис. 337); в итоге получается, что реактивный ток не производит работы.

В более общем случае, когда сдвиг фазы между током и напряжением определяется углом (в радианах), работа, производимая переменным током за целое (или полуцелое) число периодов, пропорциональна

Действительно, пусть ток отстает от напряжения на угол

Тогда работа тока за период определяется интегралом

а средняя мощность, потребляемая током, определяется отношением этой работы к продолжительности периода:

Если ввести эффективные значения тока и напряжения, то

При т. е. при чисто реактивных токах, мощность, передаваемая по электрической цепи от генератора к нагрузке, в среднем равна нулю.

При каких-либо заданных величинах напряжения и тока, чем меньше разность фаз между ними и соответственно чем ближе к единице, тем большая мощность передается током от генератора к нагрузке; поэтому называют коэффициентом мощности цепи.

Во многих случаях реактивные токи необходимы. Так, если переменным током мы питаем электромагнит, предназначенный, скажем, для подъема железных предметов, то катушка электромагнита, представляя собой в идеальном случае чисто индуктивное сопротивление, будет потреблять от сети реактивный ток, отстающий от напряжения сети на

Однако в большинстве случаев, в частности при питании трансформаторов, которые служат для преобразования переменных напряжений, важен активный ток, который создается при нагрузке вторичной обмотки трансформатора (§ 84). Реактивный же ток, который необходим для создания магнитного поля в сердечнике трансформатора, носит, в сущности, вспомогательный характер; он непосредственно не производит никакой полезной работы.

Предположим, что к сети подключено, как это часто бывает, большое количество трансформаторов. Каждый из них потребляет известный реактивный ток для создания магнитного поля сердечника. Это значительно ухудшает коэффициент мощности установки.

Однако есть возможность добиться совпадения вектора тока с вектором напряжения, воспользовавшись явлением резонанса (§ 83). Для этого включают в сеть, кроме трансформаторов, также и емкость С, подобрав ее так, чтобы ее реактивный ток был равен суммарному реактивному току трансформаторов.

Тогда во внешней цепи будет течь только активный ток, реактивные же токи трансформаторов и емкости взаимно компенсируют друг друга. Они будут циркулировать лишь в цепи: емкость - обмотки трансформаторов, не заходя в питающую сеть и в генератор электроцентрали. Для питающей линии и для генератора электроцентрали и условия их работы будут наивыгоднейшими.

Это мероприятие имеет существенное экономическое значение. Совершенно ясно, что электроцентраль и линии электропередачи, не загруженные бесполезным реактивным током, могут быть в большей мере загружены токами активными.

Следует отметить, что представление о реактивном токе как о токе, фаза которого сдвинута на относительно напряжения и который поэтому в среднем не производит никакой работы и не сопровождается рассеянием энергии (на нагревание проводов), конечно, является идеализацией (схематическим упрощением) процессов, происходящих в действительности при прохождении переменного тока через катушки или конденсаторы. Заключение, что фазы токов, проходящих через катушку или конденсатор, отличаются от фазы напряжения на 90°, являлось бы точным только в том случае, если бы прохождение этих токов не было связано с нагреванием проводов и другими потерями (как это было предположено в предыдущем параграфе). Но ток, проходящий через катушку, в отношении нагревания проводов, происходящего по закону Джоуля-Ленца, ничем не отличается от активного тока той же частоты (а при большой частоте сопротивление обмотки катушки вследствие скин-эффекта может оказаться значительным).

Кроме того, часть энергии тока рассеивается вследствие гистерезисных потерь в сердечнике катушки (если он имеется) и токов Фуко в окружающих проводниках, например в металлических «экранах», в которые помещают катушки радиоаппаратов. Может иметь место также утечка тока вследствие несовершенства изоляции и т. п. Потери энергии тока, но обычно меньшие, чем в катушках, наблюдаются и при прохождении тока через конденсаторы. В этом случае они вызываются главным образом некоторым отставанием во времени от напряженности поля поляризации диэлектрика (в той ее части, на которую оказывает

влияние молекулярно-тепловое движение), а также иногда наличием небольших ионных токов проводимости в диэлектрике конденсатора.

Вследствие потерь ток через катушку или конденсатор никогда не является чисто реактивным, т. е. сдвиг его фазы относительно напряжения никогда не бывает точно равным а всегда оказывается меньше, чем на угол который называют иглом потерь. Под действием напряжения в идеальной катушке должен был бы проходить чисто реактивный ток с амплитудой - в действительности же, как показано в конце следующего параграфа (в виде пояснения выведенного там обобщенного закона Ома), возбуждается ток с амплитудой, уменьшившейся вследствие потерь до значения этот фактический ток через катушку представляет собой сумму возникшего в связи с потерями активного тока и реактивного тока

с амплитудой, уменьшившейся до величины что из рис. 343. Согласно рис. 343

Рис. 343. Вследствие потерь амплитуда тока через катушку уменьшается до величины а амплитуда реактивного тока - до величины где угол потерь.

Аналогичные соотношения и такая же диаграмма справедливы и для тока через конденсатор. Так как активный ток - это ток, фаза которого совпадает с напряжением, то очевидно, что мощность, рассеиваемая вследствие потерь, равна Та же мощность будет рассеиваться в цепи, составленной из идеальной катушки с той же индуктивностью и некоторого сопротивления включенного последовательно с ней (называемого сопротивлением потерь), если это сопротивление определено как раз из условия равенства рассеиваемых мощностей:

Как упоминалось выше,

Поэтому получается, что

Подставляя это значение амплитуды активного тока в приведенное выше выражение для тангенса угла потерь, приходим к формуле, которую считают основной при анализе влияния потерь на режим переменного тока в электрических цепях:

По смыслу вывода этой формулы понятно, что аналогичное соотношение справедливо и для тангенса угла потерь в цепи с конденсатором

В радиотехнических расчетах часто применяют величину, обратную тангенсу угла потерь, которую называют добротностью электрической цепи (см. стр. 460 и 485):

Потери в катушках большой индуктивности в высокой мере зависят от конструкции и магнитных свойств сердечника и выполнения обмотки. При правильной конструкции потери в сердечнике и в обмотке (не одинаково зависящие от частоты) должны быть по возможности уравнены.

Для уменьшения потерь на токи Фуко сердечники набирают из тонких листов трансформаторного железа (толщиной 0,5-0,35 мм), покрытых для изоляций их друг от друга тонким (0,05 мм) слоем лака. Потери в таких сердечниках составляют около на килограмм массы сердечника. Сечение проводов выбирают с учетом возрастания их сопротивления вследствие скин-эффекта так, чтобы при эксплуатации потери в обмотке были приблизительно равны потерям в сердечнике. Суммарно потери в сердечнике и обмотке трансформаторов большой мощности (порядка составляют 3-4%, а в трансформаторах очень большой мощности (порядка несколько десятых долей процента

Потери в небольших трансформаторах лабораторного типа и в «силовых» трансформаторах, применяемых в радиоаппаратуре, обычно бывают не меньше 10-12% (чаще около Еще большую часть мощности (как правило, 30%) составляют потери в дросселях и трансформаторах усилителей звуковой частоты. Первичная обмотка трансформаторов для токов звуковой частоты состоит из 2000-5000 витков и имеет индуктивность

Катушки резонансных контуров радиочастот имеют индуктивность порядка тысячных (а для коротких волн-миллионных) долей генри. Такая индуктивность создается сравнительно небольшим числом витков провода без ферромагнитного сердечника. В связя с этим потери в радиочастотных катушках невелики - порядка 1% (тангенс угла потерь - от 0,02 до 0,005).

Потери в конденсаторах (за исключением электролитических конденсаторов) обычно не превышают что соответствует тангенсу угла потерь В электролитических конденсаторах тангенс угла потерь может достигать 0,2.

Среди лучших изоляторов (имеющих удельное сопротивление порядка ом-см) выделяются наименьшим значением тангенса угла потерь: кварц плавленый, слюда-мусковит, парафин и полистирол; для них

Реактивная мощность и энергия, реактивный ток, компенсация реактивной мощности

Реактивная мощность и энергия ухудшают показатели работы энергосистемы , то есть загрузка реактивными токами генераторов электростанций увеличивает расход топлива; увеличиваются потери в подводящих сетях и приемниках, увеличивается падение напряжения в сетях.

Реактивный ток дополнительно нагружает линии электропередачи , что приводит к увеличению сечений проводов и кабелей и соответственно к увеличению капитальных затрат на внешние и внутриплощадочные сети.

Компенсация реактивной мощности , в настоящее время, является немаловажным фактором позволяющим решить вопрос энергосбережения практически на любом предприятии.

По оценкам отечественных и ведущих зарубежных специалистов, доля энергоресурсов, и в частности электроэнергии занимает величину порядка 30-40% в стоимости продукции. Это достаточно веский аргумент, чтобы руководителю со всей серьезностью подойти к анализу и аудиту энергопотребления и выработке методики компенсации реактивной мощности . Компенсация реактивной мощности – вот ключ к решению вопроса энергосбережения.

Потребители реактивной мощности

Основные потребители реактивной мощности - , которые потребляют 40 % всей мощности совместно с бытовыми и собственными нуждами; электрические печи 8 %; преобразователи 10 %; трансформаторы всех ступеней трансформации 35 %; линии электропередач 7 %.

В электрических машинах переменный магнитный поток связан с обмотками. Вследствие этого в обмотках при протекании переменного тока индуктируются реактивные э.д.с. обуславливающие сдвиг по фазе (fi) между напряжением и током. Этот сдвиг по фазе обычно увеличивается, а уменьшается при малой нагрузке. Например, если косинус фи двигателей переменного тока при полной нагрузке составляет 0,75-0,80, то при малой нагрузке он уменьшится до 0,20-0,40 .

Малонагруженные трансформаторы также имеют низкий (косинус фи). Поэтому, применять компенсацию реактивной мощности, то результирующий косинус фи энергетической системы будет низок и ток нагрузки электрической, без компенсации реактивной мощности, будет увеличиваться при одной и той же потребляемой из сети активной мощности. Соответственно при компенсации реактивной мощности (применении автоматических конденсаторных установок КРМ) ток потребляемый из сети снижается, в зависимости от косинус фи на 30-50%, соответственно уменьшается нагрев проводящих проводов и старение изоляции.

Кроме этого, реактивная мощность наряду с активной мощностью учитывается поставщиком электроэнергии , а следовательно, подлежит оплате по действующим тарифам, поэтому составляет значительную часть счета за электроэнергию.

Структура потребителей реактивной мощности в сетях энергосистем (по установленной активной мощности):



Прочие преобразователи: переменного тока в постоянный, тока промышленной частоты в ток повышенной или пониженной частоты, печная нагрузка (индукционные печи, дуговые сталеплавильные печи), сварка (сварочные трансформаторы, агрегаты, выпрямители, точечная, контактная).

Суммарные абсолютные и относительные потери реактивной мощности в элементах питающей сети весьма велики и достигают 50% мощности, поступающей в сеть. Примерно 70 - 75% всех потерь реактивной мощности составляют потери в трансформаторах.

Так, в трехобмоточном трансформаторе ТДТН-40000/220 при коэффициенте загрузки, равном 0,8, потери реактивной мощности составляют около 12%. На пути от электростанции происходит самое меньшее три трансформации напряжения, и поэтому потери реактивной мощности в трансформаторах и автотрансформаторах достигают больших значений.

Способы снижения потребления реактивной мощности. Компенсация реактивной мощности

Наиболее действенным и эффективным способом снижения потребляемой из сети реактивной мощности является применение установок компенсации реактивной мощности (конденсаторных установок) .

Использование конденсаторных установок для компенсации реактивной мощности позволяет:

  • разгрузить питающие линии электропередачи, трансформаторы и распределительные устройства;
  • снизить расходы на оплату электроэнергии
  • при использовании определенного типа установок снизить уровень высших гармоник;
  • подавить сетевые помехи, снизить несимметрию фаз;
  • сделать распределительные сети более надежными и экономичными.


glavpom.ru - Подстанции. Силовая электроника. Экология. Электротехника