Обвязка stm32 описание и инструкция по программированию. Ёмкостный датчик касаний без внешней обвязки на STM32 Discovery. Простой и быстрый старт с CooCox CoIDE

В последние годы 32 разрядные микроконтроллеры (МК) на основе процессоров ARM стремительно завоёвывают мир электроники. Этот прорыв обусловлен их высокой производи тельностью, совершенной архитектурой, малым потреблением энергии, низкой стоимостью и развитыми средствами программирования.

КРАТКАЯ ИСТОРИЯ
Название ARM является аббревиатурой Advanced RISC Machines, где RISC (Reduced Instruction Set Computer) обозначает архитектуру процессоров с сокращённым набором команд. Подавляющее число популярных МК, а пример семейства PIC и AVR, также имеют архитектуру RISC, которая позволила увеличить быстродействие за счёт упрощения декодирования инструкций и ускорения их выполнения. Появление совершенных и производительных 32 разрядных ARMмикроконтроллеров позволяет перейти к решению более сложных задач, с которыми уже не справляются 8 и 16 разрядные МК. Микропроцессорная архитектура ARM с 32 разрядным ядром и набором команд RISC была разработана британской компанией ARM Ltd, которая занимается исключительно разработкой ядер, компиляторов и средств отладки. Компания не производит МК, а продаёт лицензии на их производство. МК ARM – один из быстро развивающихся сегментов рынка МК. Эти приборы используют технологии энергосбережения, поэтому находят широкое применение во встраиваемых системах и доминируют на рынке мобильных устройств, для которых важно низкое энергопотребление. Кроме того, ARM микроконтроллеры активно применяются в средствах связи, портативных и встраиваемых устройствах, где требуется высокая производительность. Особенностью архитектуры ARM является вычислительное ядро процессора, не оснащённое какими либо дополнительными элементами. Каждый разработчик процессоров должен самостоятельно до оснастить это ядро необходимыми блоками под свои конкретные задачи. Такой подход хорошо себя зарекомендовал для крупных производителей микросхем, хотя изначально был ориентирован на классические процессорные решения. Процессоры ARM уже прошли несколько этапов развития и хорошо известны семействами ARM7, ARM9, ARM11 и Cortex. Последнее делится на подсемейства классических процессоров CortexA, процессоров для систем реального времени CortexR и микропроцессорные ядра CortexM. Именно ядра CortexM стали основой для разработки большого класса 32 разрядных МК. От других вариантов архитектуры Cortex они отличаются, прежде всего, использованием 16разрядного набора инструкций Thumb2. Этот набор совмещал в себе производительность и компактность «классических» инструкций ARM и Thumb и разрабатывался специально для работы с языками С и С++, что существенно повышает качество кода. Большим достоинством МК, построенных на ядре CortexM, является их программная совместимость, что теоретически позволяет использовать программный код на языке высокого уровня в моделях разных производителей. Кроме обозначения области применения ядра, разработчики МК указывают производительность ядра CortexM по десятибалльной шкале. На сегодняшний день самыми популярными вариантами являются CortexM3 и CortexM4. МК с архитектурой ARM производят такие компании, как Analog Devices, Atmel, Xilinx, Altera, Cirrus Logic, Intel, Marvell, NXP, STMicroelectronics, Samsung, LG, MediaTek, MStar, Qualcomm, SonyEricsson, Texas Instruments, nVidia, Freescale, Миландр, HiSilicon и другие.
Благодаря оптимизированной архитектуре стоимость МК на основе ядра CortexM в некоторых случаях даже ни же, чем у многих 8разрядных приборов. «Младшие» модели в настоящее время можно приобрести по 30 руб. за корпус, что создаёт конкуренцию предыдущим поколениям МК. МИКРОКОНТРОЛЛЕРЫ STM32 Рассмотрим наиболее доступный и широко распространённый МК семейства STM32F100 от компании STMicroelectronics , которая является одним из ведущих мировых производителей МК. Недавно компания объявила о начале производства 32битного МК, использующего преимущества индустриального
ядра STM32 в недорогих приложениях. МК семейства STM32F100 Value line предназначены для устройств, где не хватает производительности 16разрядных МК, а богатый функционал «обычных» 32разрядных приборов является избыточным. Линейка МК STM32F100 базируется на современном ядре ARM CortexM3 с периферией, оптимизированной для применения в типичных приложениях, где использовались 16разрядные МК. Производительность МК STM32F100 на тактовой частоте 24 МГц превосходит большинство 16разрядных МК. Данная линейка включает приборы с различными параметрами:
● от 16 до 128 кбайт флэшпамяти программ;
● от 4 до 8 кбайт оперативной памяти;
● до 80 портов ввода вывода GPIO;
● до девяти 16разрядных таймеров с расширенными функциями;
● два сторожевых таймера;
● 16канальный высокоскоростной 12разрядный АЦП;
● два 12разрядных ЦАП со встроенными генераторами сигналов;
● до трёх интерфейсов UART с поддержкой режимов IrDA, LIN и ISO7816;
● до двух интерфейсов SPI;
● до двух интерфейсов I2С с поддержкой режимов SMBus и PMBus;
● 7канальный блок прямого доступа к памяти (DMA);
● интерфейс CEC (Consumer Electronics Control), включённый в стандарт HDMI;
● часы реального времени (RTC);
● контроллер вложенных прерываний NVIC.

Функциональная схема STM32F100 представлена на рисунке 1.

Рис. 1. Архитектура МК линейки STM32F100

Дополнительным удобством является совместимость приборов по выводам, что позволяет, при необходимости, использовать любой МК семейства с большей функциональностью и памятью без переработки печатной платы. Линейка контроллеров STM32F100 производится в трёх типах корпусов LQFP48, LQFP64 и LQFP100, имеющих, соответственно, 48, 64 и 100 выводов. Назначение выводов представлено на рисунках 2, 3 и 4. Такие корпуса можно устанавливать на печатные платы без применения специального оборудования, что является весомым фактором при мелкосерийном производстве.


Рис. 2. МК STM32 в корпусе LQFP48 Рис. 3. МК STM32 в корпусе LQFP64


Рис. 4. МК STM32 в корпусе LQFP100

STM32F100 – доступный и оптимизированный прибор, базирующийся на ядре CortexM3, поддерживается развитой средой разработки МК семейства STM32, которая содержит
бесплатные библиотеки для всей пе риферии, включая управление двига телями и сенсорными клавиатурами.

СХЕМА ВКЛЮЧЕНИЯ STM32F100C4
Рассмотрим практическое использование МК на примере самого простого прибора STM32F100C4, который, тем не менее, содержит все основные блоки линейки STM32F100. Принципиальная электрическая схема включения STM32F100C4 представлена на рисунке 5.


Рис. 5. Схема включения МК STM32F100C4

Конденсатор С1 обеспечивает сброс МК при включении питания, а конденсаторы С2-С6 фильтруют напряжение питания. Резисторы R1 и R2 ограничивают сигнальный ток выводов МК. В качестве источника тактовой частоты используется внутренний генератор, поэтому нет необходимости применять внешний кварцевый резонатор.


Входы BOOT0 и BOOT1 позволяют выбрать способ загрузки МК при включении питания в соответствии с таб лицей. Вход BOOT0 подключён к шине нулевого потенциала через резистор R2, который предохраняет вывод BOOT0 от короткого замыкания при его использовании в качестве выход ного порта PB2. С помощью соединителя J1 и одной перемычки можно из менять потенциал на входе BOOT0, определяя тем самым способ загрузки МК – из флэшпамяти или от встроенного загрузчика. При необходимости загрузки МК из оперативной памяти аналогичный соединитель с перемычкой можно подключить и к входу BOOT1.
Программирование МК осуществляется через последовательный порт UART1 или через специальные программаторы – отладчики JTAG или STLink. Последний входит в состав популярного отладочного устройства STM32VLDISCOVERY , изображённого на рисунке 6. На плате STM32VLDIS COVERY 4контактный разъём программатора – отладчика STLink – имеет обозначение SWD. Автор статьи предлагает программировать МК через последовательный порт UART1, поскольку это значительно проще, не требует специального оборудования и не уступает в скорости JTAG или ST Link. В качестве управляющего устройства, способного формировать команды и отображать результаты работы про граммы МК, а также в качестве программатора можно использовать любой персональный компьютер (ПК), имеющий последовательный COM порт или порт USB с преобразователем USBRS232.

Для сопряжения COMпорта ПК с МК подойдет любой преобразователь сиг налов RS232 в уровни логических сигналов от 0 до 3,3 В, например, микросхема ADM3232. Линия передачи TXD последовательного порта компьютера, после преобразователя уровней, должна подключаться к входу PA10 микроконтроллера, а линия приёмника RXD, через аналогичный преобразователь, – к выходу PA9.

При необходимости использования энергонезависимых часов МК, к нему следует подключить элемент питания типа CR2032 с напряжением 3 В и кварцевый резонатор на частоту 32768 Гц. Для этого МК оснащён выводами Vbat/GND и OSC32_IN/OSC32_OUT. Предварительно вывод Vbat необходимо отключить от шины питания 3,3 В.

Оставшиеся свободными выводы МК можно использовать по необходимости. Для этого их следует подключить к разъёмам, которые расположены по периметру печатной платы для МК, по аналогии с популярными устройствами Arduino и отладочной платой STM32VLDISCOVERY .


Рис. 6. Отладочное устройство STM32VLDISCOVERY


Схема электрическая принципиальная STM32VLDISCOVERY.

Таким образом, в зависимости от назначения и способа применения МК, к нему можно подключать необходимые элементы, чтобы задействовать другие функциональные блоки и пор ты, например, ADC, DAC, SPI, I2C и т.п. В дальнейшем эти устройства будут рас смотрены подробнее.

ПРОГРАММИРОВАНИЕ
Сегодня многие компании предлагают средства для создания и отладки программ микроконтроллеров STM32. К их числу относятся Keil от ARM Ltd, IAR Embedded Workbench for ARM, Atol lic TrueStudio, CooCox IDE, GCC и Eclipse IDE. Разработчик может выбрать про граммные средства по своему пред почтению. Ниже будет описан инструментарий Keil uVision 4 от компании Keil , который поддерживает огромное число типов МК, имеет развитую систему отладочных средств и может быть использован бесплатно с ограничениями размера генерируемого кода 32 кбайт (что, фактически, максимально для рассматриваемых МК).

Простой и быстрый старт с CooCox CoIDE.

Итак приступим. Идем на официальный сайт CooCox и качаем последнюю версию CooCox CoIDE . Для скачивания необходимо зарегистрироваться, регистрация простая и бесплатная. Затем инсталлируем скачанный файл и запускаем.

CooCox CoIDE — среда разработки, на базе Eclipse, которая помимо STM32 поддерживает кучу других семейств микроконтроллеров: Freescale, Holtek, NXP, Nuvoton, TI, Atmel SAM, Energy Micro и др. С каждой новой версией CoIDE список МК постоянно пополняется. После успешной установки CoIDE запускаем:

Появится стартовое окно Step 1, в котором необходимо выбрать производителя нашего микроконтроллера. Нажимаем ST и переходим к Step 2 (выбор микроконтроллера), в котором необходимо выбрать конкретную модель. У нас STM32F100RBT6B, поэтому нажимаем на соответствующую модель:

Справа, в окне Help отображаются краткие характеристики каждого чипа. После выбора нужного нам микроконтроллера переходим к третьему шагу Step 3 — к выбору необходимых библиотек для работы:

Давайте создадим простейший проект для мигания светодиодом, как это принято для изучения микроконтроллеров.

Для этого нам понадобится библиотека GPIO, при включении которой, CoIDE попросит создать новый проект. На это предложение нажимаем Yes, указываем папку где будет храниться наш проект и его название. При этом, CoIDE подключит к проекту 3 другие, необходимые для работы библиотеки, а также создаст всю необходимую структуру проекта:

Чем еще хорош CoIDE, это тем, что в нем есть возможность загружать примеры прямо в среду разработки. В вкладке Components вы можете видеть, что почти к каждой библиотеке есть примеры, нажимаем на GPIO (with 4 examples) и видим их:

Туда можно добавлять и свои примеры. Как видно на скриншоте выше, в примерах уже присутствует код для мигания светодиодом GPIO_Blink. Можно нажать кнопку add и он добавиться в проект, но как подключаемый файл, поэтому мы сделаем по другому просто скопируем весь код примера в файл main.c. Единственное, строку void GPIO_Blink(void) замените на int main(void). Итак, нажимаем F7 (или в меню выбираем Project->Build), чтобы скомпилировать проект и… не тут то было!

Среде нужен компилятор GCC, а у нас его нет. Поэтому идем на страничку GNU Tools for ARM Embedded Processors , справа выбираем тип вашей ОС и качаем последнюю версию тулчайна. Затем запускаем файл и инсталируем gcc toolchain. Далее, в настройках CoIDE укажем правильный путь к тулчайну:

Опять нажимаем F7 (Project->Build) и видим, что компиляция прошла успешно:

Осталось прошить микроконтроллер. Для этого при помощи USB подключаем нашу плату к компьютеру. Затем, в настройках дебаггера необходимо поставить ST-Link, для этого в меню выбираем Project->Configuration и открываем вкладку Debugger. В выпадающем списке выбираем ST-Link и закрываем окно:

Попробуем прошить МК. В меню выбираем Flash->Program Download (или на панели инструментов щелкаем по соответствующей иконке) и видим, что МК успешно прошит:

На плате наблюдаем мигающий светодиод, видео или фото я думаю приводить нет смысла, т.к. все это видели.

Также, в CoIDE работают различные режимы отладки, для этого нажимаем CTRL+F5 (или в меню Debug->Debug):

На этом все. Как видите, настройка среды CoIDE и работа с ней очень проста. Надеюсь данная статья подтолкнет вас в изучении очень перспективных и недорогих микроконтроллеров STM32.

Казалось бы простая тема, а однако в комментах меня завалили вопросами как подключить микроконтроллер. Как подключить к нему светодиод, кнопку, питание. Что делать с AGND или AREF . Зачем нужен AVCC и все в таком духе. Итак, раз есть вопросы, значит тема не понятна и надо дать по возможности исчерпывающий ответ. Все описываю для контроллеров AVR, но для каких нибудь PIC все очень и очень похоже. Т.к. принципы тут едины.

Питание
Для работы микроконтроллеру нужна энергия — электричество. Для этого на него естественно нужно завести питалово. Напряжение питание у МК Atmel AVR разнится от 1.8 до 5 вольт, в зависимости от серии и модели. Все AVR могут работать от 5 вольт (если есть чисто низковольтные серии, то просьба уточнить в комментах, т.к. я таких не встречал). Так что будем считать что напряжение питания контроллера у нас всегда 5 вольт или около того. Плюс напряжения питания обычно обозначается как Vcc . Нулевой вывод (а также Земля, Корпус, да как только его не называют) обозначают GND . Если взять за пример комповый блок питания. То черный провод это GND (кстати, земляной провод традиционно окрашивают в черный цвет), а красный это +5, будет нашим Vcc . Если ты собираешься запитать микроконтроллер от батареек, то минус батареек примем за GND , а плюс за Vcc (главное чтобы напряжение питания с батарей было в заданных пределах для данного МК, позырь в даташите. Параметр обычно написан на первой странице в общем описании фич:

Operating Voltages
–1.8 — 5.5V (ATtiny2313V)
–2.7 — 5.5V (ATtiny2313)
Speed Grades
–ATtiny2313V: 0 — 4 MHz @ 1.8 — 5.5V, 0 — 10 MHz @ 2.7 — 5.5V
–ATtiny2313: 0 — 10 MHz @ 2.7 — 5.5V, 0 — 20 MHz @ 4.5 — 5.5V

Обрати внимание, что есть особые низковольтные серии (например 2313V низковльтная) у которых нижня граница напряжения питания сильно меньше. Также стоит обратить внимание на следующий пункт, про частоты. Тут показана зависимость максимальной частоты от напряжения питания. Видно, что на низком напряжении предельные частоты ниже. А низковольтные серии раза в два медленней своих высоковольтных коллег. Впрочем, разгону все процессоры покорны;)))))

Для работы контроллерам серии AVR достаточно только питания. На все входы Vcc надо подать наши 5 (или сколько там у тебя) вольт, а все входы GND надо посадить на землю. У микроконтроллера может быть много входов Vcc и много входов GND (особенно если он в квадратном TQFP корпусе. У которого питалово со всех сторон торчит). Много выводов сделано не для удобства монтажа, а с целью равномерной запитки кристалла со всех сторон, чтобы внутренние цепи питания не перегружались. А то представь, что подключил ты питалово только с одной стороны, а с другой стороны чипа навесил на каждую линию порта по светодиоду, да разом их зажег. Внутренняя тонкопленочная шина питания, офигев от такой токовой нагрузки, испарилась и проц взял ВНЕЗАПНО и без видимых, казалось бы, причин отбросил копыта. Так что ПОДКЛЮЧАТЬ НАДО ВСЕ ВЫВОДЫ Vcc и GND . Соединить их соответственно и запитать.

Отдельные вопросы вызвают AGND и AVCC — это аналоговая земля и питание для Аналого-Цифрового Преобразователя. АЦП это очень точный измеритель напряжения, поэтому его желательно запитать через дополнительные фильтры, чтобы помехи, которые не редки в обычной питающей цепи, не влияли на качество измерения. С этой целью в точных схемах проводят разделение земли на цифровую и аналоговую (они соединены должны быть только в одной точке), а на AVCC подается напряжение через фильтрующий дроссель. Если ты не планируешь использовать АЦП или не собираешься делать точные измерения, то вполне допустимо на AVCC подать те же 5 вольт, что и на Vcc , а AGND посадить на ту же землю что и все. Но подключать их надо обязательно!!! ЕМНИП от AVCC питается также порт А.

Warning!!!

В чипе Mega8 похоже есть ошибка на уровне топологии чипа — Vcc и AVcc связаны между собой внутри кристалла. Между ними сопротивление около (!!!) 5Ом Для сравнения, в ATmega16 и ATmega168 между Vcc и AVcc сопротивление в десятки МЕГА ом! В даташите на этот счет никаких указаний нет до сих пор, но в одном из топиков за 2004 год на AVRFreaks сказано, что люди бодались с цифровым шумом АЦП, потом написали в поддержку Atmel мол WTF??? А те, дескать, да в чипе есть бага и Vcc и AVcc соединены внутри кристалла. В свете этой инфы, думаю что ставить дроссель на AVcc для Mega8 практически бесполезно. Но AVcc запитывать надо в любом случае — кто знает насколько мощная эта внутренняя связь?

Простейшая схема подключения Микроконтроллера AVR приведена ниже:

Как видишь, добавился дроссель в цепь питания AVCC , а также конденсаторы. Хорошим тоном является ставить керамический конденсатор на сотню нанофарад между Vcc и GND у каждой микросхемы (а если у микрухи много вход питания и земель, то между каждым питанием и каждой землей) как можно ближе к выводам питания — он сгладит краткие импульсные помехи в шине питания вызыванные работой цифровых схем. Конденсатор на 47мКФ в цепи питания сгладит более глубокие броски напряжения. Кондесатор между AVcc и GND дополнительно успокоит питание на АЦП .

Вход AREF это вход опорного напряжения АЦП . Туда вообще можно подать напряжение относительно которого будет считать АЦП , но обычно используется либо внутренний источник опорного напряжения на 2.56 вольта, либо напряжение на AVCC , поэтому на AREF рекомендуется вешать конденсатор, что немного улучшит качество опорного напряжения АЦП (а от качества опоры зависит адекватность показаний на выходе АЦП ).

Схема сброса
Резистор на RESET . Вообще в AVR есть своя внутренняя схема сброса, а сигнал RESET изнутри уже подтянут резистором в 100кОм к Vcc . НО! Подтяжка это настолько дохлая, что микроконтроллер ловит сброс от каждого чиха. Например, от касания пальцем ножки RST , а то и просто от задевания пальцем за плату. Поэтому крайне рекомендуется RST подтянуть до питания резистором в 10к. Меньше не стоит, т.к. тогда есть вероятность, что внутрисхемный программатор не сможет эту подтяжку пересилить и прошить МК внутри схемы не удасться. 10к в самый раз.

Есть еще вот такая схема сброса:

Она замечательна чем — при включении схемы конденсатор разряжен и напряжение на RST близко к нулю — микроконтроллер не стартует, т.к. ему непрерывный сброс. Но со временем, через резистор, конденсатор зарядится и напряжение на RST достигнет лог1 — МК запустится. Ну, а кнопка позволяет принудительно сделать сброс если надо.

Задержка будет примерно T=R*C для данного примера — около секунды. Зачем эта задержка? Да хотя бы для того, чтобы МК не стартовал раньше чем все девайсы платы запитаются и выйдут на установившийся режим. В старых МК (АТ89С51 , например) без такой цепочки, обеспечивающей начальный сброс, МК мог вообще не стартануть.

В принципе, в AVR задержку старта, если нужно, можно сделать программно — потупить с пол секунды прежде чем приступать к активным действиям. Так что кондер можно выкинуть нафиг. А кнопку… как хочешь. Нужен тебе внешний RESET ? Тогда оставь. Я обычно оставляю.

Источник тактового сигнала
Тактовый генератор это сердце микроконтроллера. По каждому импульсу происходит какая нибудь операция внутри контроллера — гоняют данные по регистрам и шинам, переключаются выводы портов, щелкают таймеры. Чем быстрей тактовая частота тем шустрей МК выполняет свои действия и больше жрет энергии (на переключения логических вентилей нужна энергия, чем чаще они переключаются тем больше энергии надо).

Импульсы задаются тактовым генератором встроенным в микроконтроллер. Впрочем может быть и внешний генератор, все очень гибко конфигурируется! Скорость с которой тикает внутренний генератор зависит от настроек микроконтроллера и обвязки.


Генератор может быть:

  • Внутренним с внутренней задающей RC цепочкой.
    В таком случае никакой обвязки не требуется вообще! А выводы XTAL1 и XTAL2 можно не подключать вовсе, либо использовать их как обычные порты ввода вывода (если МК это позволяет). Обычно можно выбрать одно из 4х значений внутренней частоты. Этот режим установлен по дефолту .
  • Внутренним с внешней задающей RC цепочкой.
    Тут потребуется подключить снаружи микроконтроллера конденсатор и резистор. Позволяет менять на ходу тактовую частоту, просто подстраивая значение резистора.
  • Внутренним с внешним задающим кварцем.
    Снаружи ставится кварцевый резонатор и пара конденсаторов. Если кварц взят низкочастотный (до 1МГц) то конденсаторы не ставят.
  • Внешним.
    С какого либо другого устройства идет прямоугольный сигнал на вход МК, который и задает такты. Полезен этот режим, например, если надо чтобы у нас несколько микроконтроллеров работали в жестком синхронизме от одного генератора.

У разных схем есть разные достоинства:
В случае внутренней RC цепи мы экономим место на плате, нам не нужно дополнительных деталек, но мы не можем развить максимальную частоту и частота немного зависит от температуры, может плавать.

У внешнего кварца отличные показатели точности, но он стоит лишних 15 рублей и требует дополнительных деталей и, что самое обидное, часто съедает пару ног I/O. Также на внешнем же кварце можно добиться максимальной производительности от МК. Частота МК определяется частотой на которую заточен выбранный кварц. Внешная RC цепь позволяет тикать генератору МК быстрей чем от внутренней, стоит дешевле кварца, но имеет те же проблемы со стабильностью частоты, что и внутренняя RC цепь.

Способы тактования МК описаны в даташите в разделе System Clock and Clock Options и всецело определяются конфигурацией Fuse Bit’s . Пока же я настоятельно рекомендую НЕ ТРОГАТЬ FUSE пока ты не будешь твердо знать что ты делаешь и зачем. Т.к. выставив что нибудь не то, можно очень быстро превратить МК в кусок бесполезного кремния, вернуть к жизни который будет уже очень непросто (но возможно!)

Подключение к микроконтроллеру светодиода и кнопки
Сам по себе, без взаимодействия с внешним миром, микроконтроллер не интересен — кому интересно что он там внутри себя тикает? А вот если можно как то это отобразить или на это повлиять…

Итак, кнопка и светодиод подключаются следующим образом:


Для кнопки надо выбраную ножку I/O подключить через кнопку на землю. Сам же вывод надо сконфигурировать как вход с подтяжкой (DDRxy=0 PORTxy=1). Тогда, когда кнопка не нажата, через подтягивающий резистор, на входе будет высокий уровень напряжения, а из бит PINху будет при чтении отдавать 1. Если кнопку нажать, то вход будет положен на землю, а напряжение на нем упадет до нуля, а значит из PINxy будет читаться 0. По нулям в битах регистра PINх мы узнаем что кнопки нажаты.

Пунктиром показан дополнительный подтягивающий резистор. Несмотря на то, что внутри AVR на порт можно подключить подтяжку, она слабоватая — 100кОм. А значит ее легко придавить к земле помехой или наводкой, что вызовет ложное срабатывание. А еще эти внутренние подтягивающие резисторы очень любят гореть от наводок. У меня уже с десяток микроконтроллеров с убитыми PullUp резисторами. Все работает, но только нет подтяжки — сгорела. Вешаешь снаружи резистор и работает как ни в чем ни бывало. Поэтому, для ответственных схем я настоятельно рекомендую добавить внешнюю подтяжку на 10кОм — даже если внутреннюю накроет, внешняя послужит. В процессе обучения на это можно забить.

Светодиод подключается на порт двумя способами. По схеме Порт-земля или Порт-Питание . В первом случае для зажигания диода надо выдать в порт лог1 — высокий уровень (примерно равен Vcc). Во втором случае для зажжения диода требуется выдать в порт лог0 — низкий уровень (около нуля). Для AVR разницы вроде бы нет, а вот многие старые серии микроконтроллеров вниз тянули куда лучше чем вверх, так что схема Порт-Питание распространена чаще. Я применяю и ту и другую схему исходя из удобства разводки печатной платы. Ну, а на программном уровне разницы особой нет.
Вывод порта для работы со светодиодом надо сконфигурировать на выход (DDRxy=1) и тогда в зависимости от значения в PORTxy на ножке будет либо высокий либо низкий уровень напряжения.

Светодиод надо подключать через резистор . Дело в том, что прямое сопротивление светодиода очень мало. И если не ограничивать ток через него, то он просто напросто может сгореть нафиг. Либо, что вероятней, пожечь вывод микроконтроллера, который, к слову, может тянуть что то около 20-30мА. А для нормального свечения обычному светодиоду (всякие мы не рассматриваем сейчас, эти монстры могут и ампер сожрать) надо около 3…15мА.

Так что, на вскидку, считаем:

  • Напряжение на выходе ноги МК около 5 вольт, падение напряжени на светодиоде обычно около 2.5 вольт (выше нельзя, иначе диод сожрет тока больше чем надо и подавится, испустив красивый дым)
  • Таким образом, напряжение которое должен взять на себя ограничительный резистор будет 5-2.5 = 2.5В.
  • Ток нам нужен 5мА — нефига светодиод зря кормить, нам индикация нужна, а не освещение:)
  • R=U/I= 2.5/5E-3 = 500Ом. Ближайший по ряду это 510 Ом. Вот его и возьмем. В принципе, можно ставить от 220 Ом до 680 Ом что под руку попадется — гореть будет нормально.

Если надо подключить много светодиодов, то на каждый мы вешаем по собственному резистору. Конечно, можно пожадничать и поставить на всех один резистор. Но тут будет западло — резистор то один, а диодов много! Соответственно чем больше диодов мы запалим тем меньше тока получит каждый — ток от одного резистора разделится между четырьмя. А поставить резистор поменьше нельзя — т.к. при зажигании одного диода он получит порцию тока на четверых и склеит ласты (либо пожгет порт).

Немного схемотехнических извратов или пара слов о экономии выводов

То что не удается запаять приходится программировать. (С) народная мудрость.

Очень часто бывает так, что вроде бы и памяти контроллера под задачу хватает с лихвой, и быстродействия через край, а ножек не хватает. Вот и приходится ставить избыточный и более дорогой микроконтроллер только потому, что у него банально больше выводов. Покажу парочку примеров как можно за счет усложнения программного кода сэкономить на железе.

Во главу угла такой экономии обычно ставится принцип динамического разделения назначения выводов во времени. То есть, например, вывод может работать на какую-либо шину, а когда шина не активна, то через этот же вывод можно проверить состояние кнопки, или что нибудь передать по другой шине. Быстро (десятки или даже тысячи раз в секунду) переключаясь между двумя разными назначениями можно добиться эффекта «одновременной работы».

Главное, тут следовать двум правилам:

  • Два разных применения не должны мешать друг другу т.е. разделение во времени должно быть построено таким образом, чтобы смежная функция не искажала результат работы проверяемой функции.
  • Ни в коем случае нельзя допускать конфликта уровней напряжений.

Приведу пример:

  • У есть у нас вывод на который повешан выход с некого датчика и кнопка. Выход с датчика может быть 0, 1 в активном режиме и Hi-Z когда на датчик не приходит сигнал Enable.
  • Кнопка же дает на линию жесткий 0, путем короткого замыкания.

Как это должно работать:
Скажем, основную часть времени у нас ввод микроконтроллера настроен на вход Hi-Z и мы снимаем показания с датчика на который подан еще и сигнал Enable. Когда нам надо опросить кнопку, то мы отбираем у датчика Enable и его выходы становятся в режим Hi-Z и нам не мешают. Вывод микроконтроллера мы переводим в режим Pull-Up и проверяем нет ли на входе нуля — сигнал нажатой кнопки. Проверили? Переводим вход МК в Hi-Z вход и подаем Enable на датчик снова. И так много раз в секунду.

Тут у нас возникает два противоречия:

  • Логическое противоречие
    0 на линии может быть в двух случаях от датчика или от кнопки. Но в этом случае, пользуясь здравым смыслом и требуемым функционалом, мы логическое противоречие можем не брать во внимание.

    Просто будем знать, что нажатие кнопки искажает показания датчика, а значит когда датчик работает — мы кнопку жать не будем. А чтобы показания датчика не принять за нажатие кнопки мы, в тот момент когда ждем данные с датчика, просто не опрашиваем кнопку. От тупых действий, конечно, это не защитит. Но для упрощения примера защиту от дурака я сейчас во внимания не беру.

  • Электрическое противоречие
    Если датчик выставит 1, а мы нажмем кнопку, то очевидно, что GND с Vcc в одном проводе не уживутся и кто нибудь умрет. В данном случае умрет выход датчика, как более слабый — куда там хилому транзистору тягаться с медной кнопкой.

    Организационными методами такое противоречие не решить — на глаз нельзя определить напряжение на линии и решить можно жать кнопку или нет. Да и в каком месте сейчас программа можно тоже только догадываться. Поэтому решать будем схемотехнически.
    Добавим резистор в цепь кнопки, резистор небольшой, рассчитывается исходя из максимального тока самого слабого вывода линии.

    Если у нас, например, вывод датчика может дать не более 10мА, то резистор нужен такой, чтобы ток через него от Vcc до GND не превышал этой величины. При питании 5 вольт это будет 510Ом. Теперь, даже если на линии со стороны датчика будет лог1, высокий уровень, то нажатие на кнопку не вызовет даже искажения логического уровня т.к. резистор рассчитан с учетом максимальной нагрузки порта

Пример получился немного сумбурный, но суть думаю понятна. Я хочу чтобы ты увидел и понял не только как делается, но и зачем это делается:)

Ну и несколько примеров нескольких функций на одной ноге:
Во-первых, ISP разьем . Я уже давным давно забыл что такое тыкать микроконтроллер вначале в колодку программатора, потом в плату, потом обратно и так по многу раз, пока прогу не отладишь. У меня на плате торчат 6 выводов ISP разьема и при отладке программатор вечно воткнут в плату, а программу я перешиваю порой по нескольку раз в 10 минут. Прошил — проверил. Не работает? Подправил, перепрошил еще раз… И так до тех пор пока не заработает. Ресурс у МК на перепрошивку исчисляется тысячами раз. Но ISP разьем сжирает выводы. Целых 3 штуки — MOSI, MISO, SCK.

В принципе, на эти выводы можно еще повесить и кнопки. В таком случае никто никому мешать не будет, главное во время прошивки не жать на эти кнопки. Также можно повесить и светодиоды (правда в этом случае простейший может дать сбой, а вот молодцом!) тогда при прошивке они будут очень жизнерадостно мерцать:)))

На линии под ISP можно повесить и что нибудь другое, главное, чтобы при прошивке это ЧТОТО не начало ВНЕЗАПНО чудить . Например, управление стокилограммовым манипулятором висит на линии ISP и во время прошивки на него пошла куча бредовых данных — так он может свихнуться и кому нибудь бошку разнести. Думать надо, в общем. А вот с каким нибудь , который работает по шинному интерфейсу прокатит такая схема:

Переключаем выход с 0 на 1 и зажигаем то верхний то нижний диод. Если надо зажечь оба, то мы просто переводим вывод микроконтроллера в режим Hi-Z и словно нет его, а диоды будут гореть сквозным током. Либо быстро быстро переключать диоды между собой, в этом случае на глаз они будут оба гореть. Недостаток схемы очевиден — диоды нельзя погасить. Но если по задумке хотя бы один должен гореть, то почему бы и нет? UPD: Тут подумал, а ведь можно подобрать светодиоды и резисторы так, чтобы их суммарное падение напряжения было на уровне напряжения питания, а суммарные резисторы в таком случае загонят ток в такой мизер, что когда нога в Hi-Z то диоды вообще гореть не будут. По крайней мере на глаз это будет не заметно совсем. Разве что в кромешной тьме.

Следующий вариант он не дает экономию ножек, зато позволяет упростить разводку печатной платы, не таща к двум диодам еще и шину питания или земли:

А применив сходную тактику к кнопкам можно либо упростить разводку, либо по трем ножкам развести 6 кнопок.
Тут тоже все просто — одна нога дает подтяг, вторая косит под землю. Нажатие кнопки дает просадку напряжения на подтягивающей ножке. Это чует программа, поочередно опрашивающая каждую кнопку. Потом роли ножек меняются и опрашивается следующая кнопка.

В шестикнопочном режиме ситуация схожая — одна ножка дает подтяг, другая землю, а третья прикидывается ветошью Hi-Z и не отсвечивает. Но тут есть один побочный эффект. Например, опрашиваем мы кнопку «В». Для этого у нас верхняя линия встает на вход с подтяжкой (PORTxy=1, DDRxy=0), средня дает низкий уровень на выходе (PORTxy=0, DDRxy=1), нижняя не участвует в процессе ибо стоит в Hi-Z (PORTxy=0, DDRxy=0). Если мы нажмем кнопку «В» то верхняя линия в этот момент просядет и программа поймет что нажата кнопка «В», но если мы не будем жать «В», а нажмем одновременно «Е» и «Б» то верхняя линия также просядет, а программа подумает что нажата «В», хотя она там и рядом не валялась. Минусы такой схемы — возможна неправильная обработка нажатий. Так что если девайсом будут пользоваться быдло-операторы, жмущие на все подряд без разбора, то от такой схемы лучше отказаться.

Ну и, напоследок, схема показывающая как можно обьединить кнопку и светодиод:


Работает тоже исключительно в динамике. То есть все время мы отображаем состояние светодиода — то есть выдаем в порт либо 0 (диод горит) либо Hi-Z (диод не горит). А когда надо опросить кнопку, то мы временно (на считанные микросекунды) переводим вывод в режим вход с подтягом (DDRxy=0 PORTxy=1) и слушаем кнопку. Режим когда на выводе сильный высокий уровень (DDRxy=1 PORTxy=1) включать ни в коем случае нельзя, т.к. при нажатии на кнопку можно пожечь порт.

Минусы — при нажатии на кнопку зажигается светодиод как ни крути. Впрочем, это может быть не багой, а фичей:)

Вот такие пироги. А теперь представьте себе прогу в которой реализованы все эти динамические фичи + куча своего алгоритма. Выходит либо бесконечная череда опросов, либо легион всяких флагов. В таких случаях простейшая диспетчеризация или кооперативная это то что доктор прописал — каждый опрос гонишь по циклу своей задачи и не паришься. Зато юзаешь везде какую-нибудь ATTiny2313 и ехидно глядишь на тех кто в ту же задачу пихает Mega8 или что пожирней:)

Я ничего не знаю и боюсь что либо сжечь, что мне делать???

Не бояться и делать. В конце концов, микроконтроллер не такая уж дорогая вещь чтобы сокрушаться по поводу его смерти. Выкинул в помойку и достал из пакетика новый. На худой конец, если совсем уж страшно, то можно купить готовую демоплату на которой все уже спаяно и разведено как надо. Тебе останется только программировать и смотреть результат.

А потом, на примере того как сделана демоплата, попробовать сделать что то свое. Сама же демоплата представляет собой микроконтроллер + немного стартовой периферии, которой хватит на ряд несложных опытов и которая может облегчить подключение и исследование других устройств. Демоплаты есть разные, например фирменные комплексы вроде STK500 или AVR Butterfly или моя которая была спроектированна исходя из моего опыта и на которой будет строится весь дальнейший учебный курс.

Отладочная плата STM32 Discovery предназначена для изучения возможностей и принципов программирования 32-разрядных ARM микроконтроллеров серии STM32 от фирмы STMicroelectronics . На плате установлены все необходимые элементы для начала работы с данными микросхемами. Структура платы разделена на две части – отладчик ST-Link и непосредственно сам микроконтроллер.

Микроконтроллер

На плате STM32 Discovery установлен микроконтроллер STM32F100RBT6B, являющийся одним из наиболее простых в серии STM32. STM32F100RBT6B представляет собой 32-разрядный процессор с ядром ARM, серии Cortex-M3. Объем встроенной памяти составляет 128кБ Flash-памяти и 8кБ ОЗУ. Микросхема выполнена в 64 выводном корпусе LQFP для поверхностного монтажа.

Из периферийных устройств в STM32F100 реализованы:

  • 5 портов ввода вывода
  • 12-битный АЦП
  • 2 12-битных ЦАП
  • 3 интерфейса USART
  • интерфейс SPI
  • два интерфейса I2C
  • таймеры

Обвязка микроконтроллера

Помимо микроконтроллера на плате STM32 Discovery специалистами STMicroelectronics предусмотрены следующие устройства:

  • два пользовательских светодиода
  • пользовательская кнопка
  • кнопка сброс
  • кварцевый резонатор на 8 МГц
  • резонатор на 32768 Гц для работы часов реального времени и сторожевого таймера

Все линии портов микроконтроллера выведены на штыревые разъемы, расположенные по краям платы. Большим плюсом является доступность этих разъемов с обеих сторон.

Для питания МК используется напряжение 3.3В. Питание внешних устройств возможно от встроенного стабилизатора напряжения 5В.

Отладчик

STM32 Discovery оснащен фирменным отладчиком от STMicroelectronics, под названием ST-Link. Данная модель не совместима с изделиями от других производителей. Отладчик реализован на микроконтроллере STM32F103 и позволяет записывать программу в базовый МК и отслеживать ее работу. Для связи с компьютером используется разъем типа Mini-USB, который также позволяет питать устройства на плате. Для индикации работы отладчика используются два светодиода красного цвета. Один горит при включении питания, второй при работе отладчика.

При необходимости, отладчик может использоваться отдельно от целевого микроконтроллера, для совместной работы с другими устройствами на базе микросхем STMicroelectronikcs.

Программное обеспечение

Для работы с STM32 Discovery можно использовать несколько различных IDE. STMicroelectronics предлагает собственную среду разработки под названием Atollic True STUDIO. В версии LITE данная среда поставляется бесплатно. Также микроконтроллеры STM32 поддерживают такие, широко известные пакеты, как IAR, Keil, CODE RED. Прошивку целевого микроконтроллера возможно выполнить с помощью бесплатной утилиты ST-Link Utiliuty.

You have no rights to post comments

Программатор

Для заливки прошивки в память микроконтроллера и отладки программы используется интерфейс SWD, который требует вывода 4 линий:

  • GND - нужно объединить земли устройства и программатора;
  • SWDIO - линия, по которой передается побитово прошивка и осуществляется отладка;
  • SWSCK - синхронизирующий сигнал, необходим для отправки прошивки;
  • RESET - необходимо перезагрузить МК после заливки прошивки.

Ножки данных линий вы также можете найти в в соответствующем разделе.

Причиной перезагрузки МК могут служить следующие причины:

  • сброс;
  • низкий уровень NRST;
  • не хватка напряжения питания.

Обычно для внешней цепи сброса требуется подтягивающий резистор, однако МК STM32F1xx не нуждается во внешнем подтягивающем резисторе для сброса (ножка NRST). Рекомендуемая величина времязадающего конденсатора - 100 нФ.

Теперь, когда мы рассмотрели все вопросы, связанные с схемотехникой, пора перейти к вопросу разводки печатной платы.



glavpom.ru - Подстанции. Силовая электроника. Экология. Электротехника