Схема генератора импульсов на микроконтроллере. Функциональный генератор на микроконтроллере. Для сборки прибора потребуется

Данное устройство нажатием одной кнопки генерирует фиксированное число импульсов. Можно задать два различных набора, по умолчанию программа генерирует 1000 и 10000 импульсов.

Описание генератора точных импульсов на микроконтроллере

Схема очень простая. Генератор построен на базе микроконтроллера PIC12F629, который тактируется от внешнего RC генератора. Выходная частота может быть установлена потенциометром P1 в интервале примерно от 2 до170 Гц. Так же частоту можно изменить путем подбора емкости конденсатора С1.

Импульсы генерируются с периодом 200 машинных циклов микроконтроллера, все сигналы имеют одинаковую длину. Выходная частота, таким образом, в 800 раз меньше, чем частота генератора. Перед программированием микроконтроллера необходимо запомнить заводскую калибровочную константу по адресу 3FFh, так как в процессе программирования она может быть утеряна. Хотя на данный момент существует метод по восстановлению калибровочной константы микроконтроллеров PIC12f629 и PIC12f675

Изменяя постоянные величины в программе микроконтроллера можно задать любое количество импульсов вплоть до 65000. Если вам нужно создать различное число импульсов, просто измените константы в программе. Как это сделать видно из рисунка ниже.

Предлагаемое устройство представляет собой генератор прямоугольных импульсов управляемый через последовательный порт с компьютера. Оно было сделано для решения конкретной задачи буквально за день и возможно содержит ошибки или недоделки, я не могу гарантировать что продавая его вы заработаете кучу денег. Но все основные функции были проверены.
Максимальная частота выдаваемая генератором немного больше 13 кГц, минимальная меньше 0,01 Гц (для частоты кварцевого генератора 4 МГц).

Схема.

width=710>
Рисунок не помещается на странице и поэтому сжат!
Для того, чтобы просмотреть его полностью, щелкните .

Схема достаточно простая. Она собрана на основе микроконтроллера PIC16C63A, сигнал снимается с двух его выводов, их состояние всегда разное. Без нагрузки уровень единицы отличается от напряжения питания меньше чем на 0,1 вольт, уровень нуля тоже очень низкий. Выводы рассчитаны на ток до 30 мА. Микросхема МАХ232 используется для преобразования уровней интерфейса RS232 в уровни TTL. Для питания устройства нужен 5 вольтовый блок питания, на рисунке он не показан.

Программа.

Для установки параметров сигнала выдаваемого микроконтроллером необходимо использовать специальную программу. Программа написана для ОС Windows, ниже приведен вид ее окна.

Элементы управления предназначены для задания частоты выходного сигнала, отношения длин положительного и отрицательного полупериодов. Есть возможность ограничить количество выдаваемых импульсов (1...2 23 -1). Так как программа в микроконтроллере не позволяет выводить любую частоту, после нажатия на кнопку "Send" будет рассчитано ближайшее возможное значение частоты и оно запишется в поле частота вместо введенного с клавиатуры. Поля "Длительность 1" и "Длительность 0" содержат длительности сигнала в условных единицах с которыми работает программа в PICе, это целые числа больше нуля и меньше 2 24 . Предусмотрены настройки для выбора номера последовательного порта и частоты используемого кварцевого резонатора.

Этот проект - качественный и универсальный функциональный генератор, который несмотря на некоторую сложность схемы, по крайней мере в сравнении с более простыми , обладает очень широким функционалом, что оправдывает затраты на его сборку. Он способен выдавать 9 различных форм сигналов, а также работать с синхронизацией импульсов.

Принципиальная схема генератора на МК

Параметры устройства

  • Частотный диапазон: 10 Гц - 60 кГц
  • Цифровая регулировка частоты с 3 различными шагами
  • Формы сигнала: Sine, Triangle, Square, Saw, H-pulse, L-pulse, Burst, Sweep, Noise
  • Выходной диапазон: 15 В для синуса и треугольника, 0-5 В для других режимов
  • Имеется выход для синхронизации импульсов

Питание прибора осуществляется от 12 вольт переменки, что обеспечивает достаточно высокое (свыше 18 В) напряжение постоянного тока, необходимое для нормальной эксплуатации 78L15 и 79L15, формирующих двухполярку по 15 В. Это делается для того, чтобы микросхема LF353 могла вывести полный диапазон сигналов на нагрузке 1 кОм.

Регулятор уровня использован ALPS SRBM1L0800. В схеме следует использовать резисторы с погрешностью ±1% допуска или лучше. Ограничители тока светодиодов - резисторы 4306R серии. Яркость может быть увеличена в зависимости от предпочтений исполнителя. Генератор собран в пластиковом корпусе 178x154x36 мм с алюминиевой передней и задней панелями.

Многие контактные компоненты монтируются на передней и задней панелях (кнопки, ручки, разъемы RCA, светодиодные сборки, разъем питания). Печатные платы крепятся к корпусу болтами с пластиковыми прокладками. Все остальные элементы генератора смонтированы на печатных платах - блок питания отдельно. Левая кнопка по середине для изменения режима, правая - для выбора частоты режима.

Генератор вырабатывает различные сигналы и работает в трех режимах, которые выбираются с помощью клавиши "Select" и указываются тремя верхними (на схеме) светодиодами. Поворотный регулятор изменяет параметры сигнала в соответствии со следующей таблицей:

Сразу после настройки в режиме 1 идёт генерация синуса. Однако, начальная частота довольно низкая и по крайней мере один щелчок энкодера необходим, чтобы увеличить его. На плате есть контакт подключения прибора для программирования, что позволяет оперативно изменять функциональность генератора сигналов, если необходимо. Все файлы проекта - прошивки PIC16F870, рисунки плат, находятся

Предлагаемое устройство представляет собой генератор прямоугольных импульсов управляемый через последовательный порт с компьютера. Оно было сделано для решения конкретной задачи буквально за день и возможно содержит ошибки или недоделки, я не могу гарантировать что продавая его вы заработаете кучу денег. Но все основные функции были проверены.
Максимальная частота выдаваемая генератором немного больше 13 кГц, минимальная меньше 0,01 Гц (для частоты кварцевого генератора 4 МГц).

Схема.

Схема достаточно простая. Она собрана на основе микроконтроллера PIC16C63A, сигнал снимается с двух его выводов, их состояние всегда разное. Без нагрузки уровень единицы отличается от напряжения питания меньше чем на 0,1 вольт, уровень нуля тоже очень низкий. Выводы рассчитаны на ток до 30 мА. Микросхема МАХ232 используется для преобразования уровней интерфейса RS232 в уровни TTL. Для питания устройства нужен 5 вольтовый блок питания, на рисунке он не показан.

Программа.

Для установки параметров сигнала выдаваемого микроконтроллером необходимо использовать специальную программу. Программа написана для ОС Windows, ниже приведен вид ее окна.

Элементы управления предназначены для задания частоты выходного сигнала, отношения длин положительного и отрицательного полупериодов. Есть возможность ограничить количество выдаваемых импульсов (1...2 23 -1). Так как программа в микроконтроллере не позволяет выводить любую частоту, после нажатия на кнопку "Send" будет рассчитано ближайшее возможное значение частоты и оно запишется в поле частота вместо введенного с клавиатуры. Поля "Длительность 1" и "Длительность 0" содержат длительности сигнала в условных единицах с которыми работает программа в PICе, это целые числа больше нуля и меньше 2 24 . Предусмотрены настройки для выбора номера последовательного порта и частоты используемого кварцевого резонатора.

Источник: svv.on.ufanet.ru


C этой схемой также часто просматривают:

Для генерации видеосигнала достаточно всего одного микроконтроллера и двух резисторов. То есть можно сделать буквально карманный генератор видеосигнала размером с брелок. Такой прибор пригодится телемастеру. Его можно использовать при сведении кинескопа, регулировке чистоты цвета и линейности.

Работа генератора и его характеристики.
Генератор подключается к видеовходу телевизора, обычно это разъем типа "тюльпан" или "SCART"
Прибор генерирует шесть полей:
- текстовое поле из 17 строк;
- сетка 8x6;
- сетка 12x9;
- мелкое шахматное поле 8x6;
- крупное шахматное поле 2x2;
- белое поле.

Переключение между полями осуществляется кратковременным (длительностью менее 1с.) нажатием кнопки S2. Удержание этой кнопки в нажатом состоянии более длительное время (дольше 1 с.) приводит к выключению генератора (микроконтроллер переходит в состояние "SLEEP"). Включение генератора производится нажатием кнопки S1. О состоянии прибора (включен / выключен) сигнализирует светодиод.

Технические характеристики прибора:
- тактовая частота - 12 МГц;
- напряжение питания 3 - 5 В;
- ток потрребления в рабочем режиме:
- при напряжении питания 3В - около 5мА;
- при напряжении питания 5В - около 12мА;
- частота кадров - 50 Гц;
- число строк в кадре - 625.

Схема.
Схема очень проста.
Вся работа по формир-
ованию видеосигнала
выполняется программой,
зашитой в микрокон-
троллере. Два резистора
вместе с сопротивлением
видеовхода телевизора
обеспечивают необходи-
мые уровни напряжения
видеосигнала:
- 0 В - синхроуровень;
- 0,3 В - уровень черного;
- 0,7 В - уровень серого;
- 1 В - уровень белого.

Для формирования видеосигнала используется нулевой бит PORTA и целиком весь PORTB. (Этот порт работает в сдвиговом режиме. Несмотря на то, что сигнал снимается только с его нулевого бита, программа использует его весь. Поэтому все биты PORTB настроены как выходы.) Первый бит PORTA используется для индикации состояния генератора. Когда прибор включен, - светодиод горит. Когда прибор выключен, - светодиод погашен. Третий бит PORTA используется для переключения режимов работы генератора и его выключения. Кратковременное нажатие кнопки S2 позволяет перейти от одного поля генератора к другому. При удержании этой кнопки в нажатом состоянии дольше 1 с. прибор выключается (микроконтроллер переходит в состояние "SLEEP"). Чтобы включить генератор необходимо выполнить сброс. Это осуществляется нажатием кнопки S1. Напряжение питания прибора можно выбрать в пределах 3 - 5 В. При этом соответственно должны быть подобраны номиналы резисторов.
3В...– R5=456Ом и R6=228Ом
3,5В – R5=571Ом и R6=285Ом
4В...– R5=684Ом и R6=342Ом
4,5В – R5=802Ом и R6=401Ом
5В...- R5=900Ом и R6=450Ом
Здесь указаны расчетные значения. Реально можно ставить резисторы из стандартного ряда, например для 5В - 910Ом и 470Ом, а для 3В - 470Ом и 240Ом.
Напряжение питания генератора может быть и меньше 3В. Для каждого конкретного PICа минимум следует определять эксперементально. У меня, например, 20МГц-й PIC выпуска 2001 года работал и при 2,3 В.

Прграмма.
Программа формирует 6 полей. Каждое поле состоит из 301 строки (300 информационных строк + одна черная). Вообще расчетное число – 305 (625 строк растра - 15 строк кадровой синхронизации = 610. Информация в кадре выводится через строку (подробнее об этом смотри здесь), поэтому 610 / 2 = 305). Но при таком числе строк размер растра по вертикали получается немного больше того, что формирует видеосигнал, передаваемый телецентром.
Первая строка в каждом поле черная. В это время опрашивается состояние кнопки S2, вычисляется время удержания ее в нажатом состоянии и определяется необходимость перехода от одного поля к другому.
В графических полях есть небольшие искажения вертикальных линий. Это связано с тем, что длина некоторых строк на пару тактов больше остальных из за необходимости установления счетчиков циклов. Вцелом подпрограммы, формирующие графические поля, очень просты, поэтому нет необходимости их коментировать.
Подробнее разберем ту часть программы, которая формирует текстовое поле. Это наиболее сложный участок программы, занимает большую ее часть, использует максимум ресурсов микроконтроллера (вся память данных и значительная часть ОЗУ). Здесь используются фрагменты кода, взятые из игры Pong, которую написал Rickard Gunee.
Текстовое поле состоит из 17 строк, каждая из которых может состоять не более, чем из восьми символов. Символы отображаются через строку, то есть одна строка текста занимает 17 строк растра. (Такое отображение связано с ограниченными возможностями PIC.) Информация о графике символов хранится в памяти программ в разделе таблица. Информация о тексте строк хранится в памяти данных (64 слова = 8 строк по 8 символов). Например в строке 08h (адресами от 08h до 0Fh) записано следующее:.20.60.48.50.90.58.20 20. Каждое значение - это координата (смещение от начала) символа в таблице. Значение.20. соответствует пробелу, .60. - буква "В", .48. - буква "И", и так далее. А все вместе образует "_ВИДЕО__".
Разберем на примере, как выводится текст. Согласно программе, в 12-й текстовой строке экрана необходимо вывести информацию, на которую ссылается строка памяти данных 28h (A0 B8 68 C8 D8 70 E0 D0). Таким образом, в следующих 17 строках растра должен быть выведен текст: " p i c 1 6 f 8 4 ". Это происходит следующим образом. В первой из 17 строк выводится только черный уровень. В эти 64 мкс, пока на экране отображается черная строка, в регистры ОЗУ переписываются "верхние значения" символов: 00h.от "p", 08h от "i", 00h от "c" 18h от "1" и так далее. Во время следующей строки эти данные последовательно передаются в PORTB, то есть на видеовыход. Третья строка снова черная. За время ее выполнения, в буфер переписываются "вторые сверху" значения символов: 00h.от "p", 00h от "i", 00h от "c" 1Ch от "1"… В четвертой строке эти данные выводятся на экран. И так далее, пока вся строка не будет отображена.
Подпрограмма кадровой синхронизации целиком взята из игры Pong, которую написал Rickard Gunee . Эта подпрограмма короткая, но довольно запутанная. Если объяснять, как она работает то, получится еще длиннее и запутаннее. Лучше всего положить рядом текст подпрограммы и рисунок осциллограммы кадровых синхроимпульсов, и не торопясь разобрать каждую строку кода. Скажу только, что подпрограмма начинает выполняться не с верхней строчки, а из середины (:-)), от метки "vertsync".

Разгон PIC16F84.
Как видно из схемы в этом проекте микроконтроллер работает на частоте 12МГц. На сегодняшний день выпускаются три версии PIC16F84: на 4МГц, на 10МГц и на 20МГц. (на 1.1.2002 соотношение цен приблизительно такое: $3.5, $5.3 и $6.3) В своем проекте Pong Rickard Gunee утверждает, что использовал 4МГц-е PIC16F84 и они часами работали на частоте 12МГц без проблем. Я попробовал, и действительно 4МГц-й PIC нормально работает на частоте, которая в три раза (!!!) превышает его допустимую частоту (правда я не стал испытывать судьбу и включал генератор лишь на несколько минут). При этом у 4МГц-го PICа потребляемый ток был на 10 .. 20 % больше, чем у 20МГц-го (отсюда, видимо и ограничение по частоте). Думаю, что 10МГц-й микроконтроллер можно разгонять до 12МГц без риска, но в коммерческих проектах этого, конечно же, делать не стоит.

Изготовление.



glavpom.ru - Подстанции. Силовая электроника. Экология. Электротехника