Солнечный коллектор своими. Как собрать и изготовить солнечный коллектор своими руками. Как работает солнечный коллектор

Альтернативные источники энергии с каждым годом получают всё большее распространение. Это и не удивительно, ведь человечество стремится максимально эффективно использовать имеющиеся в наличии ресурсы и при этом не наносить вред окружающей среде.

Внимание ! Самым перспективным источником энергии считается солнце.

Именно поэтому всё больше людей задумывается о том, как сделать солнечный коллектор для отопления дома своими руками. Во многом это вызвано открытостью и доступностью данной технологии для широких масс.

Дело в том, что каких-то 20 лет назад о подобном нельзя было даже подумать. Но быстрое развитие технологий подтолкнуло промышленность к оптимизации существующего производства и созданию систем, которые по силам сделать каждому.

Главный плюс солнечной энергии заключается в её бесконечности. Мало того, специальные приспособления позволяют получать достаточно тепла даже в зимний период. Подобного эффекта можно достигнуть, если сделать самодельный солнечный коллектор для отопления дома на вакуумной основе. Но подобная конструкция довольно сложна и требует дорогостоящих материалов.

Виды систем

Перед тем как перейти к созданию самодельного солнечного коллектора, работающего за счёт солнечной энергии необходимо рассмотреть основные виды конструкций, который нашли широкое распространение в системах отопления домов:


Как видите, существует множество видов солнечных коллекторов, которые позволяют обеспечить стабильное отопление дома. Но далеко не все из них можно сделать своими руками. Конечно, в теории это возможно, но в таком случае необходимы специальные знания и дорогостоящие материалы.

Принцип работы

Перед тем как приступать к постройке самодельного солнечного коллектора для отопления дома не помешает разобраться за счёт чего он способен эффективно нагревать воду. Условно устройство можно поделить на три составных части:

  • аккумулятор,
  • световой улавливатель,
  • теплоноситель.

Задача аккумулятора самодельного солнечного коллектора для отопления дома преобразовывать солнечную энергию. В вакуумных конструкциях действует принцип термоса.

Обычно в качестве теплоносителя используется вода. Но для большей эффективности лучше залить внутрь самодельного солнечного коллектора для отопления дома антифриз. Также если вы хотите использовать его и зимой, необходимы дополнительные теплообменники, два контура и большая площадь пластин.

Как сделать солнечный коллектор из старого холодильника

Подготовка

В первую очередь для создания данной системы отопления вам понадобится найти старый холодильник со змеевиком. Потом вам нужно его извлечь. Если же старого холодильника под рукой нет, то змеевик можно сделать своими руками из медных или стальных трубок.

Для создания полноценного самодельного коллектора вам также понадобятся такие материалы:

  • коврик из резины,
  • фольга,
  • рейка,
  • стекло.

Также понадобится ёмкость для воды. Лучше всего использовать бочку достаточной для вашей системы ёмкости. Также нельзя упускать из вида трубы для слива и подачи.

Внимание ! Подберите для конструкции надёжные и удобные вентили.

С помощью всех этих нехитрых материалов, которые можно добыть в гараже, вы сделаете надёжный самодельный солнечный коллектор для отопления дома. Он сможет обеспечить необходимую вам температуру внутри помещения.

Делаем коллектор

Чтобы сделать самодельное отопление необходимо чётко следовать инструкции. Это позволит получить ожидаемый результат с наименьшими трудозатратами. Алгоритм создания конструкции состоит из следующих действий:

  1. Промойте змеевик. Внутри конструкции не должно остаться антифриза.
  2. Вокруг самодельного змеевика соорудите каркас. Его основой могут выступить обычные рейки. Габариты конструкции напрямую зависят от параметров устройства.
  3. Коврик должен соответствовать, сделанному вами каркасу. Очень важно, чтобы змеевик был установлен не впритык, а имел некоторое пространство для работы.
  4. На резиновый коврик необходимо положить фольгу.
  5. После того как фольга будет положена самодельный змеевик фиксируется посредством хомутов. Их можно добыть с того же холодильника.
  6. Закрепить хомуты лучше всего посредством винтов.
  7. В самодельной конструкции необходимо сделать несколько отверстий. Через них будут выходить трубки змеевика
  8. Крайне важно укрепить дно. С этой задачей идеально справятся рейки. Лучше всего их зафиксировать с обратной стороны.
  9. Установите сверху стекло. В качество исходного материала можно использовать старое окно. В крайнем случае его можно приобрести в строительном магазине.
  10. Для фиксации стекла подойдёт обычный скотч. Для большей надёжности периметр можно укрепить парочкой шурупов.

Теперь самодельный солнечный коллектор сделан. Как результат вы получаете полноценное отопление дома, позволяющее вам самостоятельно регулировать температуру внутри. Главным его достоинством является высокая степень автономности.

Но чтобы собранная самодельная конструкция для отопления дома показала достаточную эффективность, её ещё необходимо правильно установить. Панель должна быть обращена к югу. Нормальным считается наклон в 15-20 градусов.

Внимание ! Идеальным считается угол наклона, составляющий 35 градусов.

Относительно места установки. Идеально для самодельной конструкции подходит крыша дома. Но возможны и альтернативы, к примеру, панели можно установить на участке. Но эффективность такого отопления будет намного ниже.

Если же вы решите установить самодельный коллектор во дворе дома, то необходимо позаботиться о наклонных опорах. В противном случае отопление будет неэффективным. Угол не менее чем в 15 градусов нужен для того, чтобы на стекле не скапливались осадки. Из-за них происходит преломление света, и устройство хуже работает.

Итоги

Создать самодельный солнечный коллектор не так-то уж и сложно. Несмотря на это он позволяет обеспечить отопление дома даже в зимний период при условии внесения некоторых технических модификаций в основное устройство.

СОЛНЕЧНЫЙ КОЛЛЕКТОР ИЗ ПОЛИКАРБОНАТА

Я уже давно задумал сделать на даче солнечный коллектор для нагрева воды в летнем душе. Идея эта появилась еще два года назад, с началом строительства бани, но только в прошлом году я приступил к ее практическому воплощению. Спросите: «Что я делал до этого»? А я искал какой же мне вариант реализации выбрать. Сейчас уже даже смешно вспоминать, какой у меня был первоначальный план.

Самый распространенный и наверное самый надежный вариант самодельных солнечных водонагревателей - это коллектор спаянный из медных трубок (схема чуть выше). Я тоже изначально думал делать именно такой. Но проблема в том, что он получается слишком уж дорогим и довольно тяжелым. У меня же стояла задача сделать максимально дешевую и легкую конструкцию.

Именно поэтому я остановился на варианте использования в качестве рабочей поверхности листового сотового поликарбоната. Развитие идеи использования пластиковых панелей с внутренней канальной структурой начиналось еще с мысли об использовании ПВХ-сайдинга, но потом на глаза попался поликарбонат - его не надо «набирать» из нескольких досочек. Моя уверенность в правильности выбранного материала для солнечного коллектора стала укрепляться, когда комментариях к описанию моих тестовых конструкций читатели начали предлагать использовать именно сотовый поликарбонат или полипропилен. А недавно я еще и в интернете наше описание нескольких похожих действующих солнечных нагревателей.

Итак, курс на изготовление пластикового солнечного коллектора выбран. Приступаем к реализации.

Первым делом я для себя решил, что мой коллектор будет собран без использования стекла. В качестве ветрозащиты я собираюсь использовать тот же материал, что и для рабочей поверхности, т.е. сотовый поликарбонат.

Это прозрачный материал, светопроницаемость достаточно хорошая, поэтому я не думаю, что он будет очень сильно снижать КПД конструкции по сравнению со стеклом. А вот плюсов у такой замены фронтальному стеклу я вижу массу. Благодаря тому, что поликарбонат фактически двухслойный, это будет равносильно двойному остеклению. Это поможет создать отличный парниковый эффект.

Второй плюс поликарбоната - прочность. Он с легкостью переносит крупный град. Даже если во время града фронтальное покрытие и пострадает, это разрушение ни как не скажется на работе системы в целом. И уж конечно, последствия не будут столь катастрофическими, как при разбитом стекле.

С фронтальным покрытием определились. Следующим важным элементом солнечного коллектора является задняя теплоизоляция. Я решил использовать для этого обычный листовой пенопласт. Причины такого выбора: легкость и дешевизна. Некоторые производители используют в качестве заднего утеплителя тот же сотовый поликарбонат или полипропилен. Решение конечно изящное, коллектор получается тоненький. Но лично мне кажется, что это будет чуть дороже. К тому же, у меня на даче уже был лист пенопласта подходящего размера - остался со времен утепления дома.

Следующий шаг - надо определиться с толщиной материала, который будет использоваться в качестве коллектора. В продаже есть листы от 4 до 25 мм. Некоторые советуют «брать больше», мотивируя это тем, что получится больше площадь сечения внутренних каналов, по которым будет циркулировать жидкость, что уменьшает сопротивление потоку. Но простой расчет для листа толщиной 4 мм дает нам суммарную площадь сечения каналов в районе 35 кв.см на погонный метр - это равносильно сечению трубы диаметром 6-7 см. Не знаю как вам, но мне этого сечения более чем достаточно. К тому же надо помнить вот еще что: чем больше будет толщина рабочего листа, тем больше будет объем внутренних каналов, т.е. тем больше туда поместится теплоносителя, а он будет иметь больший вес и этим весом будет деформировать нашу систему. В коллектор из листа поликарбоната толщиной 4 мм поместится около 3-4 литров на 1 кв.м, а если взять лист 10 мм, то теплоносителя в нем будет уже около 10 литров на 1 кв.м. А еще большой объем теплоносителя будет дольше прогреваться солнцем.

Короче, я решил использовать сотовый поликарбонат толщиной 4 мм. Было куплено два листа размером 210х100 см. Один - для рабочей поверхности, второй - для фронтальной защиты.

Кстати, еще на этапе обдумывания проекта я решил делать солнечный коллектор площадью около 2 кв.м. Для такой площади мне понадобилось два отрезка метровой длинны из сплошного 12-ти метрового листа, в которых продают сотовый поликарбонат. Ширина стандартного листа 210 см. - мне это как-раз подходит.

Было еще несколько вариантов. Например, можно было бы сделать два солнечных коллектора размером 1х1 метр, их будет проще перевозить. Я не стал этим заниматься из-за увеличения объема работ по сборке двух коллекторов вместо одного. К тому же у меня сборочная площадка и место будущей эксплуатации - одна и та же дача, не придется думать как перевезти здоровенную конструкцию.

Еще можно было бы сделать вертикально ориентированный коллектор размером 1х2 метра, но в этом случае мы бы уменьшили суммарное сечение внутренних каналов коллектора (в 2 раза), а также увеличили бы их длину (тоже в 2 раза), что примерно в 4 раза увеличило бы сопротивление потоку теплоносителя и снизило бы КПД системы, в сравнении с горизонтально ориентированным коллектором 2х1 м.

Для сборки и подключения коллектора я также купил:

Канализационные трубы ПВХ. Диаметр - 32 мм. Длина - 2 м.

Заглушки для этих труб

Полипропиленовые водопроводные уголки-фиттинги с металлической резьбой

Гибкие шланги с резьбовым соединением

Канализационные трубы были выбраны вместо водопроводных т.к. у них больше диаметр и тоньше стенки - проще будет резать трубу вдоль. Учитывая, что коллектор будет работать не под давлением, прочности такой трубы вполне хватит.

Штатные заглушки для канализационных труб будут использованы по прямому назначению - они закроют трубы с одной из сторон.

Полипропиленовые уголки с резьбой подбирались прямо в магазине так, чтобы их наружный диаметр максимально подходил ко внутреннему диаметру труб. Их надо будет просто посадить на герметик.

Можно было бы использовать уголок для канализационных труб, но тогда все равно пришлось бы думать как к нему надежно подсоединить шланг подключения коллектора. А с этими водопроводными уголками я «убиваю двух тараканов одним тапком» - и вывод сделаю и разборное соединение для подключения. Вы спросите: «Почему уголки? Почему не прямой вывод?» Ну так шланги-то от пассивного солнечного коллектора будут вверх идти к теплоаккумулятору, который должен располагаться выше коллектора. Уголки, чтобы потом шланги не изгибать.

Все остальные материалы будут докупаться по мере необходимости.

Начинаем сборку коллектора. Надо сделать продольный разрез в подающей и отводящей трубе. В этот разрез будет вставлен лист сотового поликарбоната. Вода будет поступать из нижней трубы в каналы этого листа, там она будет нагреваться солнцем и под действием термосифонного эффекта подниматься вверх. Нагретая вода отводится через верхнюю трубу.

Должно получиться примерно так:

Чтобы сделать продольный разрез в трубе я использовал обычную дрель с насадкой в виде дисковой пилы. Может также использоваться углошлифовальная машинка (болгарка), но у меня ее просто не было под рукой.

Сначала я пробовал сделать пропил, удерживая трубу руками, но это оказалось практически невозможно сделать. Труба скользит в руках и постоянно дергается из-за усилий, создаваемых пилой. Я помучился минут 5, пропилив за это время всего сантиметров 10-15. Пропил получился неровный, а учитывая, что мне суммарно надо пропилить 4 метра (две трубы по 2 метра), пришлось что-то придумывать.

Зажимать тонкостенные трубы из ПВХ в тиски - это плохая идея. Поэтому был придуман и на скорую руку собран простейший зажим из двух реек и обрывков веревки.

На этой фотке также видно низкое качество пропила, полученное при удержании трубы вручную.

С этой приспособой работа пошла гораздо быстрее. Две трубы удалось пропилить минут за 5.

Качество пропила тоже получилось вполне удовлетворительным. Видно, что он гораздо ровнее, по сравнению с пропилом, который делался когда трубу держали руками.

Длина пропила должна точно соответствовать ширине рабочей части будущего солнечного коллектора. В моем случае это чуть меньше 2 метров. Начало и конец трубы должны оставаться нетронутыми, чтобы в будущем их можно было использовать для подключения или заглушить.

Что надо делать дальше, думаю, всем понятно. Надо вставить лист сотового поликарбоната в этот пропил. Но тут есть одна сложность. Из-за внутреннего напряжения в пластике пропил в трубе просто «схлопнулся» почти по всей длине. Это видно на фотке. Вставить лист в такую щель оказалось сложно. Можно было бы ее расширить, чтобы даже после этого схлопывания у нас осталась ширина 4 мм, но я решил этого не делать. Расширяя пропил мы уменьшим диаметр трубы в средней части. А если оставить все как есть, то силы внутреннего напряжения в пластике будут компенсировать небольшое давление внутри коллектора. Также благодаря этому труба будет крепче держаться за лист.

Чтобы загнать лист поликарбоната в пропил в трубе я просто разрезал конец трубы канцелярским ножом:

А потом через этот разрез просто «натянул» трубу на лист.

Далее нужно выполнить небольшую подгонку. Основная задача в том, чтобы труба оставалась прямой, а сотовый поликарбонат не заходил в трубу слишком глубоко. Вот что у меня получилось (это не свет в конце тоннеля, это свет в конце трубы)

Еще на фотках видно, что листы сотового поликарбоната с обеих сторон затянуты защитной пленкой. Я решил ее не снимать, чтобы предохранить их от повреждения и загрязнения. Сниму перед самой покраской.

Теперь приступаем к одному из самых ответственных этапов сборки солнечного коллектора. Надо герметизировать стык рабочей поверхности с трубами. Умельцы с западных сайтов используют для этого разные силиконовые герметики, но у меня, если честно, есть большие сомнения в прочности такого соединения. Мой коллектор хоть и не будет испытывать на себе давление магистрального водопровода, но все-таки мне хотелось бы быть уверенным в том, что он не протечет. Тем более, что я уже экспериментировал с разными герметиками.

В итоге, для склеивания и герметизации солнечного коллектора я выбрал термоклей. Купил клеевой термопистолет, палочки клея для пластика и вперед.

Процесс герметизации оказался на удивление прост. Правда вот расход клеевых стержней мог бы быть и поменьше. Просто я не жалел клея. Проходил по стыкам в два захода. Сначала старался загнать расплавленный термоклей в стык, чтобы он заполнил собой все щели, а вторым заходом формировал ровный наружный шов, который будет держать нагрузку. На торцах клей тоже не экономил.

Поначалу у меня были сомнения - будет ли термоклей хорошо держать соединение ПВХ с поликарбонатом. Поэтому, чтобы проверить, я сначала приклеил небольшой кусочек поликарбоната к ПВХ-трубе. Скажу вам честно - потом еле отодрал. Теперь главное мое сомнение - не будет ли термоклей размягчаться при нагревании коллектора

Следующим этапом у меня будет покраска. Для лучшего поглощения солнечной энергии я решил покрасить коллектор обычной матовой краской из баллончика.

К сожалению, этот метод не идеален. Краска ложиться неровно, остаются плохо прокрашенные участки. К тому же, одного баллончика (правда неполного) мне на 2 кв.м поверхности не хватило. В последствии пришлось докупать еще один баллончик краски. Она оказалась на базе другого растворителя, поэтому при нанесении второго слоя для плотного закрашивания, она начала коробить старую краску. Короче, результат получился не очень хороший.

Поэтому, если вы хотите избежать лишних проблем с закрашиванием солнечного коллектора, лучше в качестве материала рабочей поверхности использовать не прозрачный поликарбонат, как у меня, а черный непрозрачный сотовый полипропилен. Его не придется красить, что значительно сократит расходы.

После полного окрашивания поглощающая панель коллектора приобрела такой вот вид:

Пятна на поверхности - это следы вспучившейся краски. Вспучивание произошло из-за того, что я заливал панель краской из разных баллончиков. Одна краска была на алкидной основе, а вторая - которая с алкидной краской «не дружит». Но для процесса нагревания это вспучивание значения не имеет, поэтому я не стал его исправлять.

После окрашивания, к концам труб были тем же термоклеем приделаны уголки с резьбой.

Уголки с резьбой позволяют легко подключать и отключать коллектор при помощи гибких армированных шлангов.

После этого я решил провести серию испытаний, чтобы проверить, как коллектор будет держать давление и температуру. Пока результаты меня не очень радуют, но обо всем по порядку.

Для испытаний я просто ставил коллектор вертикально и подавал в него воду из водопровода через нижнюю трубу. Прозрачный полипропилен с обратной стороны позволяет контролировать процесс заполнения. Как только коллектор полностью заполнялся и вода начинала выливаться через верхнюю трубу, подача воды в коллектор прекращалась. Минус такого способа в том, что он создает более высокое давление воды внизу коллектора и практически нет давления вверху.

Первое заполнение коллектора водой показало, что в клеевом стыке труб и поликарбоната есть несколько протечек. Причем протечки обнаружились вверху, где давление было низкое. Отключаем панель, сливаем воду, сушим, устраняем точки протечки.

Второе подключение - ни где ничего не течет. Чтобы создать давление в районе верхней трубы я просто поднимал повыше конец отводящего гибкого шланга. Опять обнаружилась протечка. Отключаем панель, сливаем воду, сушим, устраняем точки протечки.

Третье подключение. Тут я набрался смелости и решил создать в панели повышенное давление, чтобы проверить, а вдруг он выдержит давление воды в водопроводе. Для создания давления я просто пальцем закрыл отводящую трубку. Воздух, оставшийся в коллекторе, должен был послужить амортизатором для плавного повышения давления. По мере нарастания давления, держать палец становилось все труднее, а потом клеевой шов у нижней трубы лопнул.

Выводы: слегка повышенное давление коллектор держит, но наглеть не стоит. Отключаем панель, сливаем воду, сушим, устраняем точки… нет уже не точки, а целые участки протечки.

Чтобы укрепить шов, я решил сделать его гораздо ТОЛЩЕ. Клеевым пистолетом в районе шва укладывалось большое количество термоклея, а потом все это оплавлялось и выравнивалось старым советским молотковым паяльником.

Для этой работы можно было бы использовать строительный фен, но у меня его просто не было.

После долгих мучений шов получился такой.

Некрасиво конечно, но главное чтобы держалось. Очередное испытание выявило лишь одну маленькую протечку, которая была быстро устранена. Настроение к этому моменту у меня уже было не самое радужное - оптимизм по поводу прочности швов несколько угас. Поэтому проверять панель на повышенное давление я не стал, чтобы не расстраиваться еще больше.

Не прибавило мне оптимизма также и испытание пустой панели на ярком солнце. Меньше чем за минуту коллектор нагрелся до такого состояния, что стало больно к нему прикасаться. Клей на швах на солнечной стороне также очень быстро размягчился. Понятное дело, что ни о какой прочности шва в такой ситуации речи быть не может. Если в рабочем режиме вода в коллекторе будет нагреваться до такой же высокой температуры или будет нарушена циркуляция, скорей всего швы не выдержат. Тут, видимо, надо брать какой-то более тугоплавкий термоклей.

Ну да ладно. Я на все эти неудачи махнул рукой - все таки это эксперимент. Решил довести сборку солнечного коллектора до конца. А если не получится, разберу и буду делать коллектор по другой схеме.

Под панель коллектора положил лист обычного пенопласта толщиной 5 см. А сверху все это накрыл еще одним листом прозрачного поликарбоната. Поликарбонат был немного шире, поэтому края я просто загнул и впоследствии прикрутил к пенопласту шурупами

Для изготовления рамы я использовал металлический профиль для гипсокартона. Профиль выбирал исходя из предполагаемых размеров «сандвича» солнечного коллектора. У меня профиль то ли 70х30, то ли 70х40, но как оказалось, можно было брать чуть больше, например 70х70.

В профиле самым бесцеремонным образом были вырезаны отверстия для вывода наружу точек подключения солнечного коллектора.

Немного неаккуратно, но те ножницы по металлу, которые оказались у меня под рукой, иначе сделать просто не позволяли

Сборка рамки производилась на шурупы, которые предназначены для скрепления таких металлических профилей. В результате получилось такое вот изделие.

Как видно на фото, мне пришлось дополнительно «стянуть» горизонтальные участки рамки между собой. Без этой стяжки они не хотели держать форму. Все таки для рамы был выбран слишком тонкий металлический профиль большой длины.

А вот как коллектор выглядит с обратной стороны.

На двух последних фотографиях коллектор показан на «испытательном стенде» Он был полностью заполнен водой и простоял так около часа. Протечек ни где не обнаружилось. Это обнадеживает.

Посмотрим как он покажет себя после подключения в реальных рабочих условиях.

Солнечный коллектор из поликарбоната своими руками как собрать и изготовить


Солнечный коллектор из поликарбоната своими руками как собрать и изготовить Солнечный коллектор своими руками из 14-ти метров металлопластиковой трубы стоимостью 31 руб/метр

Строим солнечный коллектор для теплицы самостоятельно

Когда солнце прячется, обычная теплица остывает. Температура снижается в конструкции резко. Солнечные теплицы конструируют таким способом, чтобы в ней обеспечивалась стабильная температура длительное время. Это достигается из-за использования специального оборудования и теплоизоляционных материалов, которые обеспечивают обогрев теплицы путем использования солнечной энергии.

Применение солнечных коллекторов помогает обогреть теплицу даже при плохих погодных условиях, когда температура окружающей среды составляет до -25°С.

Преимущества солнечных коллекторов

В виде специального варианта используется отопление теплицы солнечным коллектором. Для получения эффекта от работы коллекторов, их производят из специальных теплоизоляционных материалов. Создается надежная герметизация всех элементов системы, чтобы получить полный вакуум.

Если применять подобные обогревательные элементы, то можно произвести обогрев теплицы даже при плохих погодных условиях, когда параметры температуры окружающей среды составляют до -25°С. В подобном диапазоне температур можно проводить выращивание сельскохозяйственных культур в течение круглого года и получать высокие урожаи. Но температура снижается существенно, а также выступает за территорию рабочего диапазона.

Для решения данного вопроса применяют обогревательный тэн или тепловой насос. В итоге получается целый скомбинированный вид отопительный системы в теплице, которая почти не имеет конкурентов в этой области применения.

Направление солнечных коллекторов относится сейчас к перспективному направлению, а их стоимость постоянно снижается. Отличием солнечной энергии, которую потребляет коллектор, является экологическая чистота и бесплатность. Система способна обеспечить обогрев теплицы из поликарбоната и любой другой.

В системе отопления теплицы основной теплоноситель – это вода. Некоторые системы могут применять воздух, но получается значительно меньшая эффективность. В сравнении с водой, воздух отличается меньшей теплоемкостью.

Как своими руками создать такую теплицу

Коллектор можно сделать своими руками. Данная конструкция отличается простотой, а в виде элементов самодельного коллектора применяется медный змеевик от старых холодильников или обычные полтора литровые пластиковые бутылки.

Благодаря использованию солнечного коллектора можно значительно сэкономить материальные средства.

Можно эффективно использовать параметры самой бутылки в подобных коллекторах. Ее способность по сбору отраженных солнечных лучей позволяет создавать дополнительный теплоизоляционный слой без осуществления поворота за солнцем. Воздух, циркулирующий в бутылке, становится дополнительным изолятором, который разогревается лучами солнца. Именно поэтому в конструкции применяются бутылки, которые позволяют увеличить площадь обогреваемой поверхности трубки с теплоносителем.

Создание основной части

При изготовлении коллектора применяются такие материалы:

  1. Пластиковые бутылки.
  2. Железная бочка.
  3. Алюминиевые, медные или резиновые трубки.
  4. Деревянный брус.
  5. Шланг.
  6. Фольга.
  7. Скотч.
  8. Змеевик от старого холодильника.

Для теплоносителя подойдут трубки из разнообразных материалов: алюминий, медь, резина. Металлический вариант коллектора менее практичен из-за того, что поддается коррозии. Применение металлических трубок делает увеличение стоимости самой конструкции. Пластик использовать не рекомендуется из-за плохой теплопроводимости, подобная установка будет неэффективной.

Сборка самодельного солнечного коллектора не составит особого труда, но значительно сэкономит ваши деньги.

Из практики известно, что лучше применять при самостоятельном изготовлении коллектора только резиновый шланг для транспортировки теплоносителя. Важно, чтобы шланг имел черный цвет. В иных случаях его окрашивают обычной черной эмалью.

Приоритетней использовать матовую краску, чтобы отсутствовал эффект отражения лучей. Можно в теплоносителе использовать запчасти для старых холодильников – змеевики, по которым протекает фреон. После его демонтажа с холодильника, деталь продувается, очищается от мусора и ржавчины.

Сборка осветительного элемента

После проведения сборки, данный коллектор будет иметь вид последовательно соединенных пластиковых бутылок. Желательно использовать чистые, прозрачные и одинаковые экземпляры, а дно и горлышко требуется обрезать. С помощью бутылок составляют сплошную трубу.

Коллектор оборудуется отражателями, представляющие собой квадратики из обычной фольги.

Двухсторонний скотч используется для приклеивания фольги к нежней части бутылки. Другая половина бутылок не должна закрываться.

Для создания каркаса, где располагается коллектор, можно применить обычный брус 5 см. Используют произвольную форму каркаса, которая будет учитывать главное требование, заключающееся в устойчивости. Хомутами крепится труба с теплоносителем.

Простой аккумулятор создается из обычной железной бочки, которую нужно хорошо утеплить и герметически закупорить.

Роль конструкции теплицы

Представленный вариант по созданию самодельного коллектора не является единственным. Существуют другие разные конструкции солнечных коллекторов, которые отличаются своей стоимостью и эффективностью в работе. Любые солнечные коллекторы, которые изготавливаются самостоятельно, имеют более дешевую стоимость, чем заводские варианты.

Если профессионально подходить к выращиванию разных сельскохозяйственный культур в теплицах, то сконструированный своими руками солнечный коллектор не будет способен обеспечить необходимого температурного режима. В этом случае приобретается профессиональный коллектор. В продаже есть различные варианты по исполнению. Они имеют довольно высокую стоимость, но эффективность оправдывает потраченные средства.

Опыт показывает, что в виде изолятора теплицы можно использовать экструдированный пенополистирол. Достоинства его применения заключены в прочности, он не боится влаги и не деформируется, а при этом обеспечивает хорошую сохранность тепла.

Солнечный коллектор своими руками

Большую роль играет конструкция теплицы. Из-за работы с несимметричными конструкциями, эффективность от обогрева теплицы увеличивается на 25% в сравнении с обычными конструкциями.

Строим солнечный коллектор для теплицы самостоятельно, ДачаСадовода


Когда солнце прячется, обычная теплица остывает. Температура снижается в конструкции резко. Солнечные теплицы конструируют таким способом, чтобы в ней

Солнечный коллектор своими руками из поликарбоната

Солнечный коллектор - агрегат, производящий нагрев воды применением солнечной энергии. Для рассмотрения возьмем самый оптимальный и наиболее качественный вариант – схему солнечного коллектора из поликарбоната. Рассмотрим подробно все нюансы данного агрегата.

Солнечный коллектор состоит он из листов ячеистого поликарбоната или же полипропилена. К торцам этих листов и крепится сам коллектор. Монтируют такие листы в специальный жестяной крытый короб. В качестве крышки применяется также лист из того же материала (поликарбоната).

Также можно солнечный коллектор из поликарбоната накрыть и стеклянной крышкой, но стоит учитывать свойства поликарбоната, который, при вполне достаточной светопроницаемости, способен создать достаточный парниковый эффект, равносильный двойному остеклению. Ведь поликарбонат фактически состоит из двух слоев. К тому же, данный материал намного более прочен, чем стекло, позволяя спокойно переносить удары крупных градин. Это поможет сохранить систему в полностью рабочем состоянии даже в том случае, если наружное покрытие подвергнется деформации в процессе града.

Также немаловажно обеспечение теплоизоляции задней стенки коллектора. Оптимальным материалом для этого есть листы пенополистирола, поскольку данный материал не только достаточно легок, но и обладает весьма приемлемой ценой. При использовании полипропиленового утеплителя стоимость конструкции возрастет.

Для коллектора применяют ячеистый поликарбонат, толщины 4-25 мм. Все зависит от количества членов семьи. К примеру, для 4-х человек достаточно будет и поликарбоната 4-8 мм в толщину. Потребуется пара листов разного размера. Первый берется таких же размеров, что и короб. Второй же лист поликарбоната для солнечного коллектора должен входить внутрь короба, имея при этом зазоры необходимой ширины, поэтому он несколько меньше.

Материалы, необходимые для монтажа коллектора:

  • Водопроводная поливинилхлоридная труба, диаметром 3,2 см и длиной 1,5 метра - 2 штуки;
  • Заглушки для труб указанного выше типа – 2 шт;
  • Фиттинговые уголки из полипропилена с металлической резьбой - 2 штуки;
  • Шланги с резьбовым соединением .

Начинаем сборку коллектора из поликарбоната

Вначале, в обоих видах труб проделываются продольные разрезы, в которые впоследствии вставляется поликарбонатный ячеистый лист. Подаваемая снизу вода поступает в желобки листа, где прогревается и за счет эффекта термического сифона поднимается к верхней трубе, откуда отводится к накопителю.

Концы трубы остаются нетронутыми, чтобы в дальнейшем была возможность подключить или заглушить их. Разрез в трубе берется тех же размеров, что и ширина коллекторной части.

При вставке поликарбонатного листа в пропил есть небольшой нюанс. За счет внутреннего напряжения пластика, пропил сходится. Поэтому вставку необходимо производить осторожно, следя за тем, чтобы лист не вошел в трубу, слишком глубоко - это будет мешать нормальной циркуляции воды. Расширять пропил не стоит, поскольку за счет его напряжения труба крепче держится за поликарбонатный лист и происходит компенсация внутрилистового давления. Небольшая подгонка, конечно же, допустима.

Для улучшения сцепления поверхностей с герметиком, края листа поликарбоната обрабатывается наждачной бумагой перед вставкой в трубу. Также нужно обезжирить место будущего стыка.

Следующим этапом производится герметизация стыков трубы с рабочей поверхностью коллектора. Этап этот достаточно важен, поэтому на герметике экономить не стоит. Простой силиконовый не достаточно хорош.

Для большего уровня поглощения солнечного тепла, поверхность солнечного коллектора из поликарбоната необходимо покрасить. Кстати, для обустройства рабочей поверхности лучше применять матовый черный полипропилен. Это поможет лишний раз не отвлекаться на возможные сложности в работах по окрашиванию, да и заодно сэкономит Ваши средства.

По завершении покраски, приходит черед уголков с металлической резьбой. Они закрепляются на концах труб при помощи термоклея. Данное дополнение, как и гибкие шланги с армировкой, значительно облегчит процесс подключения и отключения коллектора.

Устанавливаем солнечный коллектор в короб

В первую очередь производится монтаж листа пенополистирола на заднюю стенку каркаса, для чего чаще всего применяется монтажная пена, или же банально – клей. Дальше – монтаж коллектора. Применяя хомуты из металла, или же пластика, закрепляем коллектор как можно плотнее к пенопласту, производя крепление с максимальным качеством. Финальным этапом идет монтаж поликарбоната с лицевой стороны. Производится крепление с применением саморезов.

Стандартная схема работы системы с солнечным коллектором

На чердак строения устанавливается объемный (160 литров) накопительный бак, утепленный минеральной ватой. Он соединяется с системой подачи горячей воды (отбор горячей воды). Подача горячей воды из бака производится без дополнительного давления, самотеком, для подачи же холодной устанавливается насос, подающий воду из колодца/скважины.

Монтируют солнечный коллектор из поликарбоната таким образом, чтобы верх коллектора не был выше накопительного бака, что позволяет воде циркулировать естественным путем. Горячая будет подниматься в бак, заменяясь холодной. Для этого также трубку, по которой подается горячая вода, крепят чуть выше середины накопителя, что помогает накапливать горячую воду вверху бака.

Еще практикуется установка двух или нескольких установок с солнечными коллекторами из поликарбоната по разным сторонам крыши, что помогает увеличить количество горячей воды, поступающей в бак, а также стабильность ее нагревания.

Солнечный коллектор из поликарбоната, Строй Быт


Солнечный коллектор своими руками из поликарбоната Солнечный коллектор - агрегат, производящий нагрев воды применением солнечной энергии. Для рассмотрения возьмем самый оптимальный и

Энергоресурсы. Бесплатная солнечная энергия сможет как минимум 6-7 месяцев в году обеспечивать теплую воду для хозяйственных нужд. А в остальные месяцы – еще и помогать системе отопления.

Но самое главное, что простой солнечный коллектор (в отличии, например, от ) можно изготовить самостоятельно. Для этого вам понадобятся материалы и инструменты, которые можно купить в большинстве строительных магазинов. В некоторых случаях будет достаточно даже того, что найдется в обычном гараже.

Представленная ниже технология сборки солнечного нагревателя использовалась в проекте "Включи солнце - живи комфортно" . Она была разработана специально для проекта немецкой компанией Solar Partner Sued , которая профессионально занимается продажей, монтажом и сервисом солнечных коллекторов и фотоэлектрических систем.

Главная идея – все должно получиться дешево и сердито. Для изготовления коллектора используются довольно простые и распространенные материалы, но его эффективность получается вполне приемлемого уровня. Она ниже, чем у фабричных моделей, но разница в цене полностью компенсирует этот недостаток.

Солнечные лучи проходят через стекло и нагревают коллектор, а остекление предотвращает утечку тепла. Стекло также препятствует движению воздуха в абсорбере без него коллектор быстро терял бы тепло из-за ветра, дождя, снега или низких внешних температур.

Раму следует обработать антисептиком и краской для наружных работ.

В корпусе делаются сквозные отверстия для подачи холодной и отвода нагретой жидкости из коллектора.

Сам абсорбер красят жаростойким покрытием. Обычные черные краски при высоких температурах начинают шелушиться или испаряться, что приводит к потемнению стекла. Краска должна полностью высохнуть, прежде чем вы закрепите стеклянное покрытие (для предотвращения конденсации).

Под абсорбером закладывается утеплитель. Чаще всего используется минеральная вата. Главное, чтобы он выдерживал довольно высокие температуры в течение лета (иногда более 200 градусов).

Снизу раму закрывают ОСБ плитой, фанерой, досками и т.п. Основное требование к этому этапу - убедиться, что низ коллектора надежно защищен от попадания влаги внутрь.

Для закрепления стекла в раме делают пазы, или крепят планки по внутренней стороне рамы. При расчете размеров рамы следует учитывать, что при изменении погоды (температуры, влажности) в течение года ее конфигурация будет немного меняться. Поэтому на каждой стороне рамы оставляют несколько миллиметров запаса.

На паз или планку крепится резиновый оконный уплотнитель (D- или Е-образный). На него кладется стекло, на которое таким же образом наносится уплотнитель. Сверху это все закрепляется оцинкованной жестью. Таким образом, стекло надежно закреплено в раме, уплотнитель защищает абсорбер от холода и влаги, а именно стекло не повредится, когда деревянная рама будет "дышать".

Стыки между листами стекла изолируются уплотнителем или силиконом.

Чтобы организовать солнечное отопление дома понадобиться накопительный бак. Здесь хранится нагретая коллектором вода, поэтому стоит позаботиться о его термоизоляции.

В качестве бака можно использовать:

  • неработающие электрические бойлеры
  • различные баллоны для газов
  • бочки для пищевого использования

Главное - помнить, что в герметичном баке будет создаваться давление в зависимости от давления водопроводной системы, к которой он будет подключен. Не каждая емкость способна выдерживать давление в несколько атмосфер.

В баке делают отверстия для входа и выхода теплообменника, ввода холодной воды, и забора нагретой.

В баке размещается спиральный теплообменник. Для него используют медь, нержавеющую сталь или пластик. Нагретая через теплообменник вода будет подниматься вверх, поэтому его следует поместить в нижней части бака.

Коллектор соединяется с баком с помощью труб (например, металлопластиковых или пластиковых), проведенных от коллектора к баку через теплообменник и обратно в коллектор. Здесь очень важно предотвратить утечку тепла: путь от бака до потребителя должен быть максимально коротким, и трубы должны быть очень хорошо изолированными.

Расширительный бачок - это очень важный элемент системы. Он представляет собой открытый резервуар, расположенный в крайней верхней точке контура циркуляции жидкости. Для расширительного бачка можно использовать как металлическую, так и пластиковую емкость. С ее помощью контролируется давление в коллекторе (из-за того, что жидкость от нагрева расширяется, могут треснуть трубы). Для снижения потерь тепла бачок также необходимо изолировать. Если в системе присутствует воздух, то он также может выходить через бачок. Через расширительный бачок происходит также наполнения коллектора жидкостью.

Энергоресурсы. Бесплатная солнечная энергия сможет как минимум 6-7 месяцев в году обеспечивать теплую воду для хозяйственных нужд. А в остальные месяцы – еще и помогать системе отопления.

Но самое главное, что простой солнечный коллектор (в отличии, например, от ) можно изготовить самостоятельно. Для этого вам понадобятся материалы и инструменты, которые можно купить в большинстве строительных магазинов. В некоторых случаях будет достаточно даже того, что найдется в обычном гараже.

Представленная ниже технология сборки солнечного нагревателя использовалась в проекте "Включи солнце - живи комфортно" . Она была разработана специально для проекта немецкой компанией Solar Partner Sued , которая профессионально занимается продажей, монтажом и сервисом солнечных коллекторов и фотоэлектрических систем.

Главная идея – все должно получиться дешево и сердито. Для изготовления коллектора используются довольно простые и распространенные материалы, но его эффективность получается вполне приемлемого уровня. Она ниже, чем у фабричных моделей, но разница в цене полностью компенсирует этот недостаток.

Солнечные лучи проходят через стекло и нагревают коллектор, а остекление предотвращает утечку тепла. Стекло также препятствует движению воздуха в абсорбере без него коллектор быстро терял бы тепло из-за ветра, дождя, снега или низких внешних температур.

Раму следует обработать антисептиком и краской для наружных работ.

В корпусе делаются сквозные отверстия для подачи холодной и отвода нагретой жидкости из коллектора.

Сам абсорбер красят жаростойким покрытием. Обычные черные краски при высоких температурах начинают шелушиться или испаряться, что приводит к потемнению стекла. Краска должна полностью высохнуть, прежде чем вы закрепите стеклянное покрытие (для предотвращения конденсации).

Под абсорбером закладывается утеплитель. Чаще всего используется минеральная вата. Главное, чтобы он выдерживал довольно высокие температуры в течение лета (иногда более 200 градусов).

Снизу раму закрывают ОСБ плитой, фанерой, досками и т.п. Основное требование к этому этапу - убедиться, что низ коллектора надежно защищен от попадания влаги внутрь.

Для закрепления стекла в раме делают пазы, или крепят планки по внутренней стороне рамы. При расчете размеров рамы следует учитывать, что при изменении погоды (температуры, влажности) в течение года ее конфигурация будет немного меняться. Поэтому на каждой стороне рамы оставляют несколько миллиметров запаса.

На паз или планку крепится резиновый оконный уплотнитель (D- или Е-образный). На него кладется стекло, на которое таким же образом наносится уплотнитель. Сверху это все закрепляется оцинкованной жестью. Таким образом, стекло надежно закреплено в раме, уплотнитель защищает абсорбер от холода и влаги, а именно стекло не повредится, когда деревянная рама будет "дышать".

Стыки между листами стекла изолируются уплотнителем или силиконом.

Чтобы организовать солнечное отопление дома понадобиться накопительный бак. Здесь хранится нагретая коллектором вода, поэтому стоит позаботиться о его термоизоляции.

В качестве бака можно использовать:

  • неработающие электрические бойлеры
  • различные баллоны для газов
  • бочки для пищевого использования

Главное - помнить, что в герметичном баке будет создаваться давление в зависимости от давления водопроводной системы, к которой он будет подключен. Не каждая емкость способна выдерживать давление в несколько атмосфер.

В баке делают отверстия для входа и выхода теплообменника, ввода холодной воды, и забора нагретой.

В баке размещается спиральный теплообменник. Для него используют медь, нержавеющую сталь или пластик. Нагретая через теплообменник вода будет подниматься вверх, поэтому его следует поместить в нижней части бака.

Коллектор соединяется с баком с помощью труб (например, металлопластиковых или пластиковых), проведенных от коллектора к баку через теплообменник и обратно в коллектор. Здесь очень важно предотвратить утечку тепла: путь от бака до потребителя должен быть максимально коротким, и трубы должны быть очень хорошо изолированными.

Расширительный бачок - это очень важный элемент системы. Он представляет собой открытый резервуар, расположенный в крайней верхней точке контура циркуляции жидкости. Для расширительного бачка можно использовать как металлическую, так и пластиковую емкость. С ее помощью контролируется давление в коллекторе (из-за того, что жидкость от нагрева расширяется, могут треснуть трубы). Для снижения потерь тепла бачок также необходимо изолировать. Если в системе присутствует воздух, то он также может выходить через бачок. Через расширительный бачок происходит также наполнения коллектора жидкостью.

Солнечный коллектор используется для поглощения энергии солнечного излучения, чтобы в дальнейшем она была концентрирована, преобразована и использована человеком.

Выработанная энергия применяется для:

  1. Обеспечения нагрева воды и запуска систем отопления жилых помещений.
  2. Обеспечения в бассейнах различного типа постоянно теплой водой.
  3. Обогрева теплиц.
  4. Для нагревания технологической воды, используемой в промышленности.

Принцип работы и область применения

Принцип действия

Конструкция и используемые для ее создания материалы направлены для максимально возможного потребления солнечной энергии. После чего она преобразовывается в тепловую, и передается для дальнейшего ее использования. в данной системе может являться как воздух, так и специальная жидкость с незамерзающими свойствами.

Циркуляция его может быть естественной и принудительной.

Коллекторы используются в различных странах с любым климатом.

Область применения их достаточно велика:

  1. Для дач, коттеджей и частных домов.
  2. Различных производственных комплексов, независимо от рода деятельности и масштаба.
  3. На автомойках, станций автозаправок.
  4. В детских и медицинских учреждениях.
  5. На объектах железнодорожного транспорта.
  6. В гостиничных, торговых и развлекательных комплексах.
  7. В заведениях общепита и офисах.

Преимущества и недостатки

Коллекторы имеют большой ряд преимуществ, к ним можно отнести:

  1. Снижение расходов на обслуживание отопительной системы дома , и обеспечение его горячим водоснабжением.
  2. Возможность получения обогрева дома и горячей воды при перебоях и временном отсутствии электроснабжения и подачи газа.
  3. Снижение нагрузки на отопительную систему , вследствие чего происходит увеличение ее срока службы.
  4. Экономия природных ресурсов и сохранение экологии.
  5. Экологичность системы не оказывает негативного воздействия на человека.

Минусом можно назвать довольно высокую стоимость и непростой монтаж этого оборудования.

Виды

Можно выделить два вида этих устройств. Каждому из них свойственны определенные характеристики и принципы действия.

Плоский коллектор


Подобные коллекторы изготовляются в виде панели, размером до 2,5 метра, в центре которой помещается поглощающая пластина. Изготавливается она из теплопроводящих металлов, медь или алюминий самые используемые для этого. На нее нанесено покрытие, которому свойственно наличие низкого коэффициента излучения.

Это требуется для наибольшего преобразования солнечных лучей в виде тепловой энергии, при этом, в окружающую среду ее выход должен быть минимальным. Этот абсорбирующий слой соединяется с трубками. Именно по ним происходит циркуляция чаще всего пропилен-гликоля, который выступает в качестве теплоносителя.

Также, или же вода. Под трубками расположен теплоизоляционный слой. Над поглотителем находится специальное защитное гелиостекло. Ему характерно минимальное содержание железа для наибольшей пропускной способности, а корпус усилен листовой сталью с теплоизоляцией или алюминием.

Используется этот вид для монтажа на скатных или же плоских крышах. Но его можно монтировать в любом месте и положении. Этот вид наиболее распространен и получил широкое использование для отопительных систем и для нагрева воды.

Трубчатый (вакуумированный)

Состоит он из отдельных трубок. Число их может быть от 5 до 30 штук. Каждая, из трубок по принципу действия представляет собой миниколлектор. Все они объединены в одну панель.

Внутри трубки находится еще одна такая же деталь меньшего размера. Между ними создан вакуум. Верхняя часть состоит из гелиостекла и выполняет функцию защиты. В нее встроена пластинка поглотителя, состоящая из меди или алюминия. Меньшая трубка находится под пластиной, в ней происходит циркуляция теплоносителя. Вакуум в этом случае играет роль теплоизолятора.

Такой солнечный коллектор действует значительно эффективней по сравнению с плоским, в условиях низких атмосферных температур. Но стоимость их значительно выше.

Трубчатый коллектор в свою очередь бывает двух видов, отличных по конструкции. Различают тип с тепловой трубой и прямоточный. Преимуществом первого типа можно назвать сохранение эффективной работоспособности при температуре до -30 градусов Цельсия, а в некоторых случаях даже до -40.

Отличительными особенностями прямоточного коллектора является возможность его монтажа в любом положении, а также минимальные теплопотери при работе.

Как сделать своими руками?


Устройство коллектора

Этот прибор для экономии энергии можно изготовить собственными руками. Вариантов исполнения в этом случае существует немало. Например, его можно сделать из оконной рамы, старого электрического бойлера, холодильника, и даже пластиковых бутылок.

Рассмотрим один из наиболее простых коллекторов, изготовленных при помощи деталей старого холодильника. Осуществлять такой коллектор будет подогрев воды для технических нужд.

Необходимые материалы и инструменты

Материалы:

  1. Конденсатор, снятый со старого холодильника.
  2. Брусья из дерева, 5/5 см.
  3. Резиновый коврик.
  4. Стекло (подойдет от оконной рамы).
  5. Лист фольги.
  6. Шурупы, гвозди.
  7. Скотч.

Инструменты:

  1. Молоток.
  2. Шуруповерт.

Перед проведением работ, змеевик от холодильника необходимо промыть с использованием моющего средства и проточной воды. Это надо для его очищения от фреонового масла.


Для увеличения эффективности самодельного коллектора, можно использовать автомобильный радиатор, заменив им конденсатор.

Испытания показали, что этот агрегат способен за два часа работы нагреть около 20 литров воды на 20 градусов. Температура окружающей среды при эксперименте составляла +25 градусов Цельсия.

Конечно, такое устройство имеет низкое КПД и вероятность выхода из строя из-за завоздушивания теплообменника, но тем не менее, оно приносит определенную пользу.

Поскольку, солнечные коллекторы имеют эффективность, которая зависит от отражающей способности и поглощающей особенности материала, для увеличения этих особенностей были придуманы специальные покрытия.

Каждое из них подходит к определенному материалу, на который они будут наноситься. Есть покрытия для меди, алюминия и др. Нанесение их осуществляется довольно сложным способом, поэтому они не имеют широкого доступа.


  1. При выборе коллектора надо учитывать , что вакуумные его модели более хрупкие по сравнению с плоскими, но при повреждениях значительно проще починить первый вариант. Для этого потребуется всего лишь заменить вышедшие из строя трубки, когда как в плоском придется заменить всю абсорбирующую систему;
  2. Мощности , вырабатываемой с помощью одного коллектора, хватит для отопления нескольких жилых комнат и подогрева воды.
  3. Срок службы коллектора составляет до 30 лет. Но при покупке этого аппарата нужно учитывать, что вакуумный тип менее долговечен, по сравнению с другими.
  4. Установить это оборудование можно самостоятельно , используя инструкцию, которая прилагается к устройству. Процесс этот довольно трудоемкий и нелегкий, но позволяет сэкономить на затратах, необходимых для привлечения специалистов.


glavpom.ru - Подстанции. Силовая электроника. Экология. Электротехника