Как определить сечение магнитопровода. Использование онлайн калькулятора для расчета трансформатора. Силовые трансформаторы, простой расчет

Возникла необходимость в мощном блоке питания. В моём случае имеются два магнитопровода броневой-ленточный и тороидальный. Броневой тип: ШЛ32х50(72х18) . Тороидальный тип: ОЛ70/110-60.

ИСХОДНЫЕ ДАННЫЕ для расчёта трансформатора с тороидальным магнитопроводом:

  • напряжение первичной обмотки, U1 = 220 В;
  • напряжение вторичной обмотки, U2 = 36 В;
  • ток вторичной обмотки, l2 = 4 А;
  • внешний диаметр сердечника, D = 110 мм;
  • внутренний диаметр сердечника, d = 68 мм;
  • высота сердечника, h = 60 мм.

Расчет трансформатора с магнитопроводом типа ШЛ32х50(72х18) показал, что выдать напряжение 36 вольт с силой тока 4 ампера сам сердечник в состоянии, но намотать вторичную обмотку возможно не получится, из-за недостаточной площади окна. Приступаем к расчёту трансформатора с магнитопроводом типа ОЛ70/110-60.

Программный (он-лайн) расчет, позволит налету экспериментировать с параметрами и сократить время на разработку. Также можно рассчитать и по формулам, они приведены ниже. Описание вводимых и расчётных полей программы: поле светло-голубого цвета - исходные данные для расчёта, поле жёлтого цвета - данные выбранные автоматически из таблиц, в случае установки флажка для корректировки этих значений, поле меняет цвет на светло-голубой и позволяет вводить собственные значения, поле зелёного цвета - рассчитанное значение.

Формулы и таблицы для ручного расчет трансформатора:

1. Мощность вторичной обмотки;

2. Габаритная мощность трансформатора;

3. Фактическое сечение стали магнитопровода в месте расположения катушки трансформатора;

4. Расчётное сечение стали магнитопровода в месте расположения катушки трансформатора;

5. Фактическая площадь сечения окна сердечника;

6. Величина номинального тока первичной обмотки;

7. Расчёт сечения провода для каждой из обмоток (для I1 и I2);

8. Расчет диаметра проводов в каждой обмотке без учета толщины изоляции;

9. Расчет числа витков в обмотках трансформатора;

n - номер обмотки,
U’ - падение напряжения в обмотках, выраженное в процентах от номинального значения, см. таблицу.

В тороидальных трансформаторах относительная величина полного падения напряжения в обмотках значительно меньше по сравнению с броневыми трансформаторами.

10. Расчет числа витков приходящихся на один вольт;

11. Формула для расчёта максимальной мощности которую может отдать магнитопровод;

Sст ф - фактическое сечение стали имеющегося магнитопровода в месте расположения катушки;

Sок ф - фактическая площадь окна в имеющемся магнитопроводе;

Вмах- магнитная индукция, см. табл.№5;

J - плотность тока, см. табл.№3;

Кок - коэффициент заполнения окна, см. табл.№6;

Кст - коэффициент заполнения магнитопровода сталью, см. табл.№7;

Величины электромагнитных нагрузок Вмах и J зависят от мощности, снимаемой со вторичной обмотки цепи трансформатора, и берутся для расчетов из таблиц.

Определив величину Sст*Sок, можно выбрать необходимый линейный размер магнитопровода, имеющий соотношение площадей не менее, чем получено в результате расчета.

Иногда приходится самостоятельно изготовлять силовой трансформатор для выпрямителя. В этом случае простейший расчет силовых трансформаторов мощностью до 100-200 Вт проводится следующим образом.

Зная напряжение и наибольший ток, который должна давать вторичная обмотка (U2 и I2), находим мощность вторичной цепи: При наличии нескольких вторичных обмоток мощность подсчитывают путем сложения мощностей отдельных обмоток.

Мощность передается из первичной обмотки во вторичную через магнитный поток в сердечнике. Поэтому от значения мощности Р1 зависит площадь поперечного сечения сердечника S, которая возрастает при увеличении мощности. Для сердечника из нормальной трансформаторной стали можно рассчитать S по формуле:

где s - в квадратных сантиметрах, а Р1 - в ваттах.

По значению S определяется число витков w" на один вольт. При использовании трансформаторной стали

Если приходится делать сердечник из стали худшего качества, например из жести, кровельного железа, стальной или железной проволоки (их надо предварительно отжечь, чтобы они стали мягкими), то следует увеличить S и w" на 20-30 %.

и т.д.

В режиме нагрузки может быть заметная потеря части напряжения на сопротивлении вторичных обмоток. Поэтому для них рекомендуется число витков брать на 5-10 % больше рассчитанного.

Ток первичной обмотки

Диаметры проводов обмоток определяются по значениям токов и исходя из допустимой плотности тока, которая для трансформаторов принимается в среднем 2 А/мм2. При такой плотности тока диаметр провода без изоляции любой обмотки в миллиметрах определяется по табл. 1 или вычисляется по формуле:

Когда нет провода нужного диаметра, то можно взять несколько соединенных параллельно более тонких проводов. Их суммарная площадь сечения должна быть не менее той, которая соответствует рассчитанному одному проводу. Площадь поперечного сечения провода определяется по табл. 1 или рассчитывается по формуле:

Для обмоток низкого напряжения, имеющих небольшое число витков толстого провода и расположенных поверх других обмоток, плотность тока можно увеличить до 2,5 и даже 3 А/мм2, так как эти обмотки имеют лучшее охлаждение. Тогда в формуле для диаметра провода постоянный коэффициент вместо 0,8 должен быть соответственно 0,7 или 0,65.

В заключение следует проверить размещение обмоток в окне сердечника. Общая площадь сечения витков каждой обмотки находится (умножением числа витков w на площадь сечения провода, равную 0,8d2из, где dиз - диаметр провода в изоляции. Его можно определить по табл. 1, в которой также указана масса провода. Площади сечения всех обмоток складываются. Чтобы учесть ориентировочно неплотность намотки, влияние каркаса изоляционных прокладок между обмотками и их слоями, нужно найденную площадь увеличить в 2-3 раза. Площадь окна сердечника не должна быть меньше значения, полученного из расчета.

Таблица 1

В качестве примера рассчитаем силовой трансформатор для выпрямителя, питающего некоторое устройство с электронными лампами. Пусть трансформатор должен иметь обмотку высокого напряжения, рассчитанную на напряжение 600 В и ток 50 мА, а также обмотку для накала ламп, имеющую U = 6,3 В и I = 3 А. Сетевое напряжение 220 В.

Определяем общую мощность вторичных обмоток:

Мощность первичной цепи

Находим площадь сечения сердечника из трансформаторной стали:

Число витков на один вольт

Ток первичной обмотки

Число витков и диаметр проводов обмоток равны:

Для первичной обмотки

Для повышающей обмотки

Для обмотки накала ламп

Предположим, что окно сердечника имеет площадь сечения 5x3 = 15 см2 или 1500 мм2, а у выбранных проводов диаметры с изоляцией следующие: d1из = 0,44 мм; d2из = 0,2 мм; d3из = 1,2 мм.

Проверим размещение обмоток в окне сердечника. Находим площади сечения обмоток:

Для первичной обмотки

Для повышающей обмотки

Для обмотки накала ламп

Общая площадь сечения обмоток составляет примерно 430 мм2.

Как видно, она в три с лишним раза меньше площади окна и, следовательно, обмотки разместятся.

Расчет автотрансформатора имеет некоторые особенности. Его сердечник надо рассчитывать не на полную вторичную мощность Р2, а только на ту ее часть, которая передается магнитным потоком и может быть названа трансформируемой мощностью Рт.

Эта мощность определяется по формулам:

Для повышающего автотрансформатора

Для понижающего автотрансформатора, причем

Если автотрансформатор имеет отводы и будет работать при различных значениях n, то в расчете надо брать значение п, наиболее отличающееся от единицы, так как в этом случае значение Рт будет наибольшее и надо, чтобы сердечник мог передать такую мощность.

Затем определяется расчетная мощность Р, которая может быть принята равной 1,15 Рт. Множитель 1,15 здесь учитывает КПД автотрансформатора, который обычно несколько выше, чем у трансформатора. Д

алее применяются формулы расчета площади сечения сердечника (по мощности Р), числа витков на вольт, диаметров проводов, указанные выше для трансформатора. При этом надо иметь в виду, что в части обмотки, являющейся общей для первичной и вторичной цепей, ток равен I1 - I2, если автотрансформатор повышающий, и I2 - I1 если он понижающий.

При проектировании трансформатора, основной параметр устройства представлен показателями его мощности.

Как рассчитать мощность трансформатора

Особенность работы стандартного трансформатора представлена процессом преобразования электроэнергии переменного тока в показатели переменного магнитного поля и наоборот. Самостоятельный расчет трансформаторной мощности может быть выполнен в соответствии с сечением сердечника и в зависимости от уровня нагрузки.

Расчет обмотки преобразователя напряжения и его мощности

По сечению сердечника

Электромагнитный аппарат имеет сердечник с парой проводов или несколькими обмотками. Такая составляющая часть прибора, отвечает за активное индукционное повышение уровня магнитного поля. Кроме всего прочего, устройство способствует эффективной передаче энергии с первичной обмотки на вторичную, посредством магнитного поля, которое концентрируется во внутренней части сердечника.

Параметрами сердечника определяются показатели габаритной трансформаторной мощности, которая превышает электрическую.

Расчетная формула такой взаимосвязи:

S о х S с = 100 х Р г / (2,22 х В с х А х F х К о х К c), где

  • S о - показатели площади окна сердечника;
  • S с - площадь поперечного сечения сердечника;
  • Р г - габаритная мощность;
  • B с - магнитная индукция внутри сердечника;
  • А - токовая плотность в проводниках на обмотках;
  • F - показатели частоты переменного тока;
  • К о - коэффициент наполненности окна;
  • К с - коэффициент наполненности сердечника.

Показатели трансформаторной мощности равны уровню нагрузки на вторичной обмотке и потребляемой мощности из сети на первичной обмотке.

Самые распространенные разновидности трансформаторов производятся с применением Ш -образного и П - образного сердечников.

По нагрузке

При выборе трансформатора учитывается несколько основных параметров, представленных:

  • категорией электрического снабжения;
  • перегрузочной способностью;
  • шкалой стандартных мощностей приборов;
  • графиком нагрузочного распределения.

В настоящее время типовая мощность трансформатора стандартизирована.

Варианты трансформаторов

Чтобы выполнить расчет присоединенной к трансформаторному прибору мощности, необходимо собрать и проанализировать данные обо всех подключаемых потребителях. Например, при наличии чисто активной нагрузки, представленной лампами накаливания или ТЭНами, достаточно применять трансформаторы с показателями мощности на уровне 250 кВА.

В системах электрического снабжения показатели трансформаторной мощности приборов должны позволить обеспечивать стабильное питание всех потребителей электроэнергии.

Определение габаритной мощности трансформатора

Показатели габаритной мощности трансформатора могут быть приблизительно определены в соответствии с сечением магнитопровода. В этом случае уровень погрешности часто составляет порядка 50%, что обусловлено несколькими факторами.

Трансформаторная габаритная мощность находится в прямой зависимости от конструкционных характеристик магнитопровода, а также качественных показателей материала и толщины стали. Немаловажное значение придаётся размерам окна, индукционной величине, сечению проводов на обмотке, а также изоляционному материалу, который располагается между пластинами.

Схема трансформатора

Безусловно, вполне допустимо экспериментальным и стандартным расчётным способом выполнить самостоятельное определение максимальной трансформаторной мощности с высоким уровнем точности. Однако, в приборах заводского производства такие данные учтены, и отражаются количеством витков, располагающихся на первичной обмотке.

Таким образом, удобным способом определения этого показателя является оценка размеров площади сечения пластин: Р = В х S² / 1,69

В данной формуле:

  • параметром P определяется уровень мощности в Вт;
  • B - индукционные показатели в Тесла;
  • S - размеры сечения, измеряемого в см²;
  • 1,69 - стандартные показатели коэффициента.

Индукционная величина - табличные показатели, которые не могут быть максимальными, что обусловлено риском значительного отличия магнитопроводов с разным уровнем качественных характеристик.

При выборе прибора, преобразующего показатели напряжения, следует помнить, что более дешевые трансформаторы обладают невысокой относительной габаритной мощностью.

Расчет понижающего трансформатора

Выполнить самостоятельно расчет показателей мощности для однофазного трансформатора понижающего типа – достаточно легко. Поэтапное определение:

  • показателей мощности на вторичной трансформаторной обмотке;
  • уровня мощности на первичной трансформаторной обмотке;
  • показателей поперечного сечения трансформаторного сердечника;
  • фактического значения сечения трансформаторного сердечника;
  • токовых величин на первичной обмотке;
  • показателей сечения проводов на первичной и вторичной трансформаторных обмотках;
  • количества витков на первичной и вторичной обмотках;
  • общего числа витков на вторичных обмотках с учетом компенсационных потерь напряжения в кабеле.

На заключительном этапе определяются показатели площади окна сердечника и коэффициента его обмоточного заполнения. Определение сечения сердечника, как правило, выражается посредством его размеров, в соответствии с формулой: d 1 =А х В, где «А» - это ширина, а «В» - толщина.

Следует отметить, что при самостоятельном расчете, необходимо увеличивать количество витков на вторичной обмотке примерно на 5-10%.

Упрощенный расчет 220/36 В

Стандартный трансформатор с 220/36 В, представлен тремя основными компонентами в виде первичной и вторичной обмотки, а также магнитопровода. Упрощенный расчет силового трансформатора включает в себя определение сечения сердечника, количества обмоточных витков и диаметра кабеля. Исходные данные для простейшего расчета представлены напряжением на первичной U 1 и на вторичной обмотке – U 2 , а также током на вторичной обмотке или I 2 .

В результате упрощенного расчета устанавливается зависимость между сечением сердечника Sсм², возведенным в квадрат и общей трансформаторной мощностью, измеряемой в Вт. Например, прибором с сердечником, имеющим сечение 6,0 см², легко «перерабатывается» мощность в 36 Вт.

Да сих пор мы исходили из посыла, что первичная обмотка цела. А что делать, если она оказалась оборванной или сгоревшей дотла?

Оборванную обмотку можно размотать, восстановить обрыв и намотать заново. А вот сгоревшую обмотку придётся перемотать новым проводом. Конечно, самый простой способ, это при удалении первичной обмотки посчитать количество витков.

Если нет счётчика, а Вы, как и я, используете приспособление на основе ручной дрели, то можно вычислить величину редукции дрели и посчитать количество полных оборотов ручки дрели. До тех пот, пока мне не подвернулся на базаре счётчик оборотов, я так и делал.

Но, если обмотка сильно повреждена или её вообще нет, то рассчитать количество витков первичной обмотки трансформатора можно по приведённой формуле. Эта формула подходит для частоты сети равной 50 Герц.

  • ω – число витков на один вольт,
  • 44 – постоянный коэффициент,
  • T – величина индукции в Тесла,
  • S – сечение магнитопровода в квадратных сантиметрах.

Сечение моего магнитопровода – 6,25см².

Магнитопровод витой, броневой, поэтому я выбираю индукцию 1,5 Т.

44 / 1,5 * 6,25 = 4,693 вит./вольт

Определяем количество витков первичной обмотки с учётом максимального напряжения сети:

4,693 * 220 * 1,05 = 1084 вит.

Допустимые отклонение напряжения сети принятые в большинстве стран: -10… +5%. Отсюда и коэффициент 1,05.

Величину индукции можно определить по таблице

Не стоит использовать максимальное значение индукции, так как оно может сильно отличаться для магнитопроводов различного качества.

Видео: Расчет трансформатора питания. Простая электроника

Наиболее ответственной и дорогой деталью силового блока радиоустройства, питающегося от сети переменного тока, является силовой трансформатор. Один из примеров принципиальной схемы трансформатора приведён на рис. 1. Трансформатор имеет сердечник, собранный из тонких пластин трансформаторной стали. Обмотки трансформатора выполняются из медного изолированного провода на прессшпановом каркасе.

Сердечники трансформатора собираются из пластин двух типов: Г-образных и Ш-образных. Типом пластин определяется и конструкция трансформаторов, которые показаны на рис. 2.

На стержневом сердечнике (Г-образные пластины) обмотки трансформатора размещаются равномерно на обоих стержнях (рис. 2, а), например на одном стержне размещаются первичная (сетевая) обмотка и понижающая для накала ламп, а на другом - вторичная повышающая (высоковольтная) обмотка. При этом типе пластин обмотки иногда размещаются и на одном стержне сердечника.

На броневом сердечнике (Ш-образные пластины) все обмотки помещаются на его среднем стержне (рис. 2, б).

Если мы подключим первичную обмотку I трансформатора к источнику переменного тока (рис. 3), по ней будет протекать переменный ток, который создаст в сердечнике переменный магнитный поток. Так как на втором стержне трансформатора расположена вторичная обмотка II, переменный магнитный поток будет пересекать витки вторичной обмотки, вследствие чего в ней (по закону электромагнитной индукции) будет наводиться электродвижущая сила (ЭДС). Если параллельно вторичной обмотке включить прибор (вольтметр), он покажет величину индуктированного напряжения.

Для того чтобы понизить напряжение электросети, вторичная обмотка должна иметь меньшее количество витков, чем сетевая, а для повышения напряжения - большее по сравнению с первичной (сетевой) обмоткой.

Для питания радиоаппаратуры требуются различные напряжения: высокое (с последующим выпрямлением) для питания анодных цепей и цепей экранных сеток ламп и два низких - для питания цепей накала ламп и отдельно для накала кенотрона, если он применяется в выпрямителе (исключение составляет только кенотрон 6Ц5С, нить накала которого можно питать от общей обмотки накала).

Вследствие потерь в сердечнике и обмотках от вторичной обмотки трансформатора никогда нельзя получить ту же мощность, какая была подведена к первичной обмотке. Отсюда существует понятие о КПД (коэффициент полезного действия) трансформатора. Самодельные трансформаторы, рассчитанные по упрощенным формулам к выполненные на обычной трансформаторной стали, имеют КПД обычно ее выше 70-80%.

Предположим, что трансформатор должен обеспечить питанием усилитель или приёмник, потребляющий по анодным цепям ток 100 мА при напряжении 250 В и по цепи накала ток 2 А при напряжении 6,3 В. Для выпрямления переменного тока берем кенотрон 5Ц4С, для накала нити которого требуется ток 2 а при напряжении 5 В (для определения токов, потребляемых электродами той или иной лампы, следует пользоваться их справочными данными).

Таким образом, с большим приближением (без учета падения напряжения на внутреннем сопротивлении кенотрона и дросселе фильтра) вторичная обмотка должна быть рассчитана на напряжение 250 В и силу тока 100 мА (0,1 А), обмотка накала ламп на напряжение 6,3 В и силу тока 2 А, а обмотка накала кенотрона на 5 В и ток 2 А. Подсчитываем их мощность по формуле

где U в вольтах, а I в амперах. Следовательно, P1=250*0,1=25 Вт, Р2=5*2=10 Вт, Р3=6,3*2=12,6 Вт.

P сб = P1 + P2 + P3 ... Вт (2)

Мощность во всех трех вторичных обмотках будет равна

Р сб = 25 + 10+ 12,6 = 47,6 Вт.

Если принять КПД трансформатора, изготовленного в любительских условиях, не выше 80%, потребляемую от сети мощность можно подсчитать по формуле

Р пер = 1,2*Р сб. (3)

В нашем случае мощность, потребляемая от сети, будет равна

Р пр = 1,2*47,6 = 57,12 Вт.

Следующий этап расчёта - определение сечения сердечника, т, е площади сердечника в квадратных сантиметрах - Q см 2 . Рассчитывается она по формуле

Qсм 2 = 1,2*P пер 0,5 = см 2 . (4)

Так как сердечник собирается из тонких пластин, изолированных друг от друга, в формулу введён коэффициент 1,2, учитывающий заполнение сердечника. Таким образом, сечение сердечника нашего трансформатора будет равно

Q см 2 = 1*2 57,12 0,5 = 9,07 см 2

(считаем округленно 9,0 см 2).

После этого нужно определить ширину пластин среднего стержня (если пластины Ш-образные) и толщину набора в см. Перемножив эти величины, получим площадь сечения стержня. Так как расчет всех геометрических размеров сердечника (площадь окна, толщина набора и ширина пластин) для начинающего радиолюбителя - дело довольно сложное, можно просто считать отношение ширины пластин стержня к толщине набора равным от 1 до 2.

Таблица 1

При таком соотношении можно быть уверенным, что полученное из дальнейшего расчёта количество витков уложится в окно сердечника. Из приведенных в табл. 1 данных выбираем пластины Ш-25, при которых толщина набора получится 3,6 см, а отношение сторон будет равно 1,44, так как 9 см 2: 2,5 см = 3,6 см, а 3,6:2,5 = 1,44.

n0 = (45 - 60)/Q = витков, (5)

где Q - сечение сердечника в см 2 . Если имеются пластины из трансформаторной стали хорошего качества, в числитель следует подставлять число 45, если сталь плохая - 60. При расчете считаем, что сердечник взят от заводского трансформатора, тогда число витков на один вольт будет равно

Дальнейший расчёт обмоток уже не представляет никакой сложности, следует только перемножить количество витков, приходящееся на один вольт, на заданное напряжение той или иной обмотки. Первичная обмотка для включения в сеть с напряжением 127 В должна иметь П1 = 127х5 = 635 витков, повышающая на 250 В - П2 = 250х5 = 1250 витков, для накала кенотрона 5 В - П3 = 5х5 = 25 витков и для накала ламп 6,3 В - П4 = 6,3х5 = 31,5 витка (округляем до 32 витков).

Последний этап расчёта обмоток - определение диаметра обмоточного провода по формуле, предусматривающей длительную, беспрерывную нагрузку трансформатора, при которой плотность (сила) тока на один квадратный миллиметр сечения провода берётся не более двух ампер,

d = 0,8*I 0,5 = мм, (6)

где d - диаметр провода в миллиметрах, I - сила тока в амперах.

В нашем случае d2 = 0,8*0,1 0,5 = 0,8х0,316 = 0,25 мм; d3 = d = 0,8*2 0,5 = 8х1,41= 1,1 мм (округлённо).

I1 = 57,12/127 = 0,45 А (округлённо),

отсюда d1= 0,8*0,45 0,5 = 0,54 мм, или, округлённо, 0,55 мм.

Для большей уверенности можно проверить, уложатся ли обмотки в окне выбранного нами сердечника. Делается это так. Из табл. 1 видно, что длина окна пластины сердечника равна 6 см, а ширина 2,5 см, но так как обмотки наматываются на каркас, который в окне занимает много места, указанные размеры следует уменьшить на толщину щёк каркаса и толщину гильзы. В результате длина окна получится примерно 5,2 см, а ширина 2,2 см. По табл. 2 находим, что провода обмоток в эмалевой изоляции будут иметь следующие внешние диаметры: d1 = 0,59 мм, d2 = 0,27 мм, d3 = d4 = 1,15 мм.

Таблица 2

Диаметр провода без изоляции, мм

Диаметр провода в изоляции, мм

ПЭЛ ПШО ПШД ПБО ПБД
0,1 0,115 0,15 0,2 0,19 -
0,15 0,165 0,2 0,25 0,24 -
0,2 0,215 0,26 0,32 0,29 0,37
0,25 0,27 0,31 0,37 0,34 0,42
0,31 0,33 0,37 0,43 0,42 0,51
0,35 0,38 0,41 0,47 0,46 0,55
0,41 0,44 0,47 0,53 0,52 0,61
0,44 0,475 0,5 0,56 0,55 0,64
0,51 0,545 0,57 0,63 0,62 0,71
0,55 0,59 0,61 0,67 0,66 0,75
0,64 0,68 0,7 0,76 0,75 0,84
0,8 0,85 - - 0,91 1,00
1,0 1,05 - - 1,125 1,25
1,2 1,26 - - 1,325 1,45

Таким образом, в одном слое из провода диаметром 0,59 уложится 52/0,59 = 88 витков, а число слоев этой обмотки будет равно

685/88 = 7 (округлённо). По ширине окна слои займут 7x0,59 = 4,2 мм, или 0,42 см.

Для провода диаметром 0,27 (с изоляцией) число витков в слое будет 2/0,27 = 192. Соответственно получим количество слоев 6,5, считаем с запасом семь слоев. Они займут по ширине окна 2 мм, или 0,2 см.

Количество витков в слое провода диаметром 1,15 равно 52/1,15 = 45. Таким образом, обмотки накала уложатся в два слоя, что займёт по ширине окна 2,3 мм, или 0,23 см.

Сложив полученные величины 0,42+0,2+0,23, получим, что все обмотки по ширине окна займут 0,85 см.

В своём расчете мы не предусмотрели, что много места займут выводные концы обмоток, прокладки между слоями из папиросной или конденсаторной бумаги и прокладки между обмотками из лакоткани или нескольких слоев кабельной бумаги.

Следует учесть, что начинающие радиолюбители не смогут сразу плотно и аккуратно, виток к витку, наматывать обмотки. Поэтому мы примем, что обмотки в окне займут не 0,85 см, а 1 см. Если же при подсчете окажется, что обмотки в окне не уместятся, тогда следует взять пластины большего размера или увеличить толщину пакета пластин. Таким образом, можно будет уменьшить число витков обмоток на одни вольт.

Для изготовления трансформатора необходимы также прессшпан, фибра или гетинакс толщиной 1,5-2 мм. Для изоляции обмоток друг от друга и между слоями обмоток понадобится лакоткань, кабельная или, в крайнем случае, обычная писчая бумага. Лакоткань, обладающая высокими изоляционными свойствами, можно заменить несколькими слоями чертежной кальки.

Изготовление катушки трансформатора начинается с изготовления деревянной болванки для каркаса, стороны которой должны быть несколько больше (на 0,5 мм) сторон стержня сердечника, а её длина на 1,5-2 см больше длины стержня трансформатора.

В центр деревянной болванки нужно вбить гвоздь без шляпки, как показано на рис. 4.

После этого приступают к изготовлению каркаса из прессшпана или гетинакса указанной толщины, на котором делается разметка сторон гильзы и щёк каркаса, как показано на рис. 5. Длина каркаса должна быть несколько меньше длины стержня (на 1-2 мм).

Несмотря на то что такой каркас изготовляется без клея, он при аккуратном выполнении обладает большой прочностью. Собранный каркас (рис. 5) надевается на болванку, и в том случае, если он держится на ней неплотно, между каркасом и болванкой следует проложить полоску картона или обвернуть болванку несколькими слоями бумаги.

Если у радиолюбителя имеются дрель и тиски, намотка катушки трансформатора не представляет больших трудностей. В тисках нужно зажать в горизонтальном положении дрель, в патрон которой зажать гвоздь болванки. При вращении дрели гильза ни в коем случае не должна бить вследствие перекосов или эксцентриситета, так как витки будут ложиться неправильно, что затруднит процесс намотки, ухудшит её качество, вследствие чего обмотка займёт значительно больше места. После того как каркас укреплён в патроне дрели, следует заготовить полоски из бумаги, лакоткани или другого изоляционного материала, ширина которых должна быть на 4-5 мм больше расстояния между щеками гильзы.

Выводы обмоток (за исключением обмоток накала) ни в коем случае нельзя делать той же проволокой, а многожильным, хорошо изолированным проводом длиной 10-12 см, к которому припаивается намоточный провод. Место спайки нужно хорошо изолировать путем обвертывания его кусочком лакоткани, укрепить катушку с проволокой, как показано на рис. 6, и приступить к намотке.

При намотке рекомендуется вращать рукоятку дрели правой рукой, а локоть левой руки класть на стол так, чтобы пальцы, держащие провод, находились на расстоянии 20-30 см перед каркасом. Таким способом легче производить намотку виток к витку (витки реже, сбиваются).

Если радиолюбитель не располагает счетчиком, то после намотки каждого слоя следует сосчитать количество витков в слое и записать результат.

Считать витки можно и так. Сначала определить, сколько оборотов делает патрон дрели за один оборот рукоятки, и записывать число сделанных оборотов, предварительно умножив на полученное отношение. Например: за один оборот рукоятки дрели патрон делает 3,8 оборота, следовательно, за 100 оборотов, сделанных рукой во время намотки, будет намотано 380 витков.

Каждый слой наматываемой обмотки следует прокладывать заготовленной полоской бумаги и внимательно следить, чтобы последние витки каждого слоя не проваливались между щекой в нижний слой, так как в этом месте возможен пробой изоляции между слоями, который можно объяснить следующим. В нашем расчёте получилось, что на один вольт приходится 5 витков, а в двух слоях высоковольтной обмотки укладывается 192х2 = 384 витка, следовательно, эффективное напряжение, действующее между двумя слоями, будет равно 386/5, или 77 В, а амплитудное напряжение - 108 В, что при нагреве обмоток может привести к пробою изоляции.

Перед тем как приступить к намотке вторичных обмоток, в первую очередь высоковольтной, поверх первичной обмотки следует положить два слоя лакоткани или два-три слоя кабельной бумаги. Все обмотки должны быть хорошо изолированы друг от друга.

Выводные концы обмоток следует располагать на какой-либо одной стороне щёк катушки, в противном случае их легко попортить при набивке катушки, особенно если пластины изготовлены с просечкой, как показано на рис. 7. Для набивки стальными пластинами катушку кладут на стол, после чего одну половину пластин располагают с правой стороны катушки, а другую с левой. Набивка производится вперекрышку, т. е. одна пластина вдвигается в катушку с правой стороны, а другая с левой. Обычно готовые пластины с одной стороны бывают покрыты лаком, поэтому при набивке катушки нужно следить, чтобы лакированные стороны пластин были всегда обращены вверх или вниз. Набивку пластин нужно производить с максимальной плотностью, для чего перед окончанием набивки сердечник следует спрессовать путём сжатия его в тисках и тогда можно будет вставить еще большее количество пластин.

Собранный сердечник трансформатора следует со всех сторон подбить молотком, чтобы все пластины улеглись в ровную стопку, а после этого стянуть сердечник шпильками.

Изготовленный трансформатор следует испытать, включив его в электросеть. Если по истечении одного-двух часов обмотки не нагреются, значит трансформатор рассчитан и сделан правильно.

Нагрев обмотки может объясняться наличием замкнутых витков (неаккуратная намотка). Перед тем как трансформатор включить, необходимо проверить, чтобы выводные концы обмотки случайно не замкнулись между собой. Дребезжание пластин сердечника указывает на неплотную сборку. В этом случае нужно вставить сердечник ещё несколько штук пластин и сильнее затянуть тайки на шпильках. Если радиолюбитель располагает вольтметром переменного тока или авометром, следует проверить напряжения на всех вторичных обмотках.



glavpom.ru - Подстанции. Силовая электроника. Экология. Электротехника