Как работает стабилитрон. Параллельный параметрический и последовательный стабилизаторы напряжения Балластный резистор для стабилитрона

До недавнего времени для питания маломощных каскадов радиоэлектронной аппаратуры использовались параметрические стабилизаторы напряжения. Сейчас намного дешевле и эффективней применить малошумящие компенсационные стабилизаторы, подобные ADP3330 или ADM7154. Тем не менее в ряде уже производящейся аппаратуры уже применены параметрические стабилизаторы, поэтому необходимо уметь их расчитывать. Наиболее распространенная схема параметрического стабилизатора приведена на рисунке 1.


Рисунок 1. Схема параметрического стабилизатора

На данном рисунке приведена схема стабилизатора положительного напряжения. Если требуется стабилизировать отрицательное напряжение, то стабилитрон ставится в противоположном направлении. Напряжение стабилизации полностью определяется типом стабилитрона.

Расчет стабилизатора таким образом сводится к расчету резистора R 0 . Прежде чем начинать его расчет следует определиться с основным дестабилизирующим фактором:

  • входное напряжение;
  • ток потребления.

Нестабильное входное напряжение при стабильном токе потребления присутствует обычно в источниках опорного напряжения для аналого-цифровых и цифро-аналоговых преобразователей. Для параметрического стабилизатора, питающего определенный узел аппаратуры, приходится учитывать изменение выходного тока. В приведенной на рисунке 1 схеме при постоянном входном напряжении ток I всегда будет стабильным. Если нагрузка будет потреблять меньше тока, то его излишки уйдут в стабилитрон.

I = I ст + I н (1)

Поэтому максимальный ток нагрузки не может превышать максимальный ток стабилитрона. Если входное напряжение не будет постоянным (а эта ситуация очень распространена), то допустимый диапазон изменения тока нагрузки дополнительно уменьшается. Сопротивление резистора R 0 расчитывается по закону Ома. При расчете используется минимальное значение входного напряжения.

(2)

Максимальный диапазон изменения входного напряжения можно определить по закону Киргофа. После небольших преобразований его можно свести к следующей формуле:


(3)

Таким образом расчет параметрического стабилизатора достаточно прост. Именно это и составляет его привлекательность. Однако при выборе типа стабилизатора следует иметь в виду то обстоятельство, что стабилитрон (но не стабистор) является источником шума. Поэтому описанный стабилизатор не следует применять в ответственных блоках радиоаппаратуры. Еще раз подчеркну, что при проектировании новой аппаратуры в качестве вторичного источника питания лучше подойдут малогабаритные малошумящие компенсационные стабилизаторы, такие как ADP7142.

Литература:

  1. Сажнёв А.М., Рогулина Л.Г., Абрамов С.С. “Электропитание устройств и систем связи”: Учебное пособие/ ГОУ ВПО СибГУТИ. Новосибирск, 2008г. – 112 с.
  2. Алиев И.И. Электротехнический справочник. – 4-е изд. испр. – М.: ИП Радио Софт, 2006. – 384с.
  3. Гейтенко Е.Н. Источники вторичного электропитания. Схемотехника и расчёт. Учебное пособие. – М., 2008. – 448 с.
  4. Электропитание устройств и систем телекоммуникаций: Учебное пособие для вузов / В.М.Бушуев, В.А. Деминский, Л.Ф. Захаров и др. – М.,2009. – 384 с.
  5. Параметрические стабилизаторы напряжения. Расчёт простейшего параметрического стабилизатора на стабилитроне (http://www.radiohlam.ru/)
Содержание:

В слаботочных схемах с нагрузками не более 20 мА используется устройство с низким коэффициентом полезного действия, известное как параметрический стабилизатор напряжения. В конструкцию данных приборов входят транзисторы, стабисторы и стабилитроны. Они используются преимущественно в компенсационных стабилизирующих устройствах как опорные источники напряжения. В зависимости от технических характеристик, параметрические стабилизаторы могут быть однокаскадными, многокаскадными и мостовыми.

Стабилитрон, находящийся в составе конструкции, напоминает обратно включенный диод. Однако пробой напряжения в обратном направлении, характерный для стабилитрона, является основой его нормального функционирования. Данное свойство широко применяется для различных схем, в которых нужно создать ограничение входного сигнала по напряжению. Параметрические стабилизаторы относятся к быстродействующим устройствам, они защищают чувствительные участки схем от импульсных помех. Использование этих элементов в современных схемах стало показателем их высокого качества, обеспечивающего стабильную работу оборудования в различных режимах.

Схема параметрического стабилизатора

Основой параметрического стабилизатора является схема включения стабилитрона, использующаяся также и в других типах стабилизаторов в качестве источника опорного напряжения.

Стандартная схема состоит из , который, в свою очередь включает в себя балластный резистор R1 и стабилитрон VD. Параллельно стабилитрону включается сопротивление нагрузки RH. Данная конструкция стабилизирует выходное напряжение при изменяющемся напряжении питания Uп и токе нагрузки Iн.

Работа схемы происходит в следующем порядке. Напряжение, увеличивающееся на входе стабилизатора, вызывает увеличение тока, проходящего через резистор R1 и стабилитрон VD. Напряжение стабилитрона остается неизменным за счет его вольтамперной характеристики. Соответственно, не изменяется и напряжение на сопротивлении нагрузки. В результате, все измененное напряжение будет поступать на резистор R1. Принцип работы схемы дает возможность для расчетов всех необходимых параметров.

Расчет параметрического стабилизатора

Качество работы стабилизатора напряжения оценивается по его коэффициенту стабилизации, определяемого по формуле: КстU= (ΔUвх/Uвх) / (ΔUвых/Uвых). Далее расчет параметрического стабилизатора напряжения на стабилитроне осуществляется в соответствии с сопротивлением балластного резистора Ro и типом используемого стабилитрона.

Для расчета стабилитрона применяются следующие электрические параметры: Iст.макс - максимальный ток стабилитрона на рабочем участке вольтамперной характеристики; Iст.мин - минимальный ток стабилитрона на рабочем участке вольтамперной характеристики; Rд - дифференциальное сопротивление на рабочем участке вольтамперной характеристики. Порядок расчета можно рассмотреть на конкретном примере. Исходные данные будут следующие: Uвых= 9 В; Iн= 10 мА; ΔIн= ± 2 мА; ΔUвх= ± 10%Uвх.

В первую очередь в справочнике выбирается стабилитрон марки Д814Б, параметры которого составляют: Uст= 9 В; Iст.макс= 36 мА; Iст.мин= 3 мА; Rд= 10 Ом. После этого выполняется расчет входного напряжения по формуле: Uвх=nстUвых, в которой nст является коэффициентом передачи стабилизатора. Работа стабилизирующего устройства будет наиболее эффективной когда nст, составляет 1,4-2,0. Если nст = 1,6, то Uвх= 1,6 х 9 = 14,4В.

На следующем этапе выполняется расчет сопротивления балластного резистора (Ro). Для этого применяется следующая формула: Rо= (Uвх-Uвых) / (Iст+Iн). Значение тока Iст выбирается по принципу: Iст ≥ Iн. В случае одновременного изменения Uвх на величину ΔUвх и Iн на величину ΔIн, не должно быть превышения током стабилитрона значений Iст.макс и Iст.мин. В связи с этим, Iст берется как среднее допустимое значение в данном диапазоне и составляет 0,015А.

Таким образом, сопротивление балластного резистора будет равно: Rо= (14,4 - 9) / (0,015 + 0,01) = 216 Ом. Ближайшее стандартное сопротивление составит 220 Ом. Для того чтобы выбрать нужный тип резистора, нужно выполнить расчет мощности, рассеиваемой на его корпусе. Используя формулу Р = I2Rо, получаем значение Р = (25· 10-3)2х 220 = 0,138 Вт. То есть стандартная мощность рассеивания резистора будет 0,25Вт. Поэтому для схемы лучше всего подойдет резистор МЛТ-0,25-220 Ом ± 10 %.

После выполнения всех расчетов нужно проверить, правильно ли выбран режим работы стабилитрона в общей схеме параметрического стабилизатора. Вначале определяется его минимальный ток: Iст.мин= (Uвх-ΔUвх-Uвых) /Rо - (Iн+ΔIн), с реальными параметрами получается значение Iст.мин= (14,4 - 1,44 - 9) х 103/ 220 - (10 + 2) = 6 мА. Такие же действия выполняются для определения максимального тока: Iст.макс= (Uвх+ΔUвх-Uвых) /Rо - (Iн-ΔIн). В соответствии с исходными данными, максимальный ток составит: Iст.макс= (14,4 + 1,44 - 9) · 103/ 220 - (10 - 2) = 23 мА. Если полученные значения минимального и максимального тока выходят за допустимые пределы, то в этом случае нужно изменить Iст или Rо. В некоторых случаях требуется замена стабилитрона.

Параметрический стабилизатор напряжения на стабилитроне

Для любой радиоэлектронной схемы обязательно наличие источника питания. Они могут быть постоянного и переменного тока, стабилизированными и нестабилизированными, и линейными, резонансными и квазирезонансными. Такое разнообразие дает возможность выбора источников питания для разных схем.

В наиболее простых электронных схемах, где не требуется высокая стабильность питающего напряжения или большая выходная мощность, чаще всего применяются линейные источники напряжения, отличающиеся надежностью, простотой и низкой стоимостью. Их составной частью служат параметрические стабилизаторы напряжения и тока в конструкцию которых входит элемент, имеющий нелинейную вольтамперную характеристику. Типичным представителем таких элементов является стабилитрон.

Данный элемент относится к особой группе диодов, работающих в режиме обратной ветви вольтамперной характеристики в области пробоя. При включении диода в прямом направлении от анода к катоду (от плюса к минусу) с напряжением Uпор, через него начинает свободно проходить электрический ток. Если же включено обратное направление от минуса к плюсу, то через диод проходит лишь ток Iобр, составляющий всего несколько мкА. Увеличение на диоде обратного напряжения до определенного уровня приведет к его электрическому пробою. При достаточной величине силы тока диод выходит из строя под действием теплового пробоя. Работа диода в области пробоя возможна в случае ограничения тока, проходящего через диод. В различных диодах напряжение пробоя может составлять от 50 до 200В.

В отличие от диодов, вольтамперная характеристика стабилитрона имеет более высокую линейность, в условиях постоянного напряжения пробоя. Таким образом, для стабилизации напряжения с помощью этого устройства обратная ветвь вольтамперной характеристики. На участке прямой ветви работа стабилитрона происходит точно так же, как и у обычного диода.

В соответствии со своей вольтамперной характеристикой, стабилитрон обладает следующими параметрами:

  • Напряжение стабилизации - Uст. Зависит от напряжения на стабилитроне во время протекания тока Iст. Диапазон стабилизации у современных стабилитронов находится в пределах от 0,7 до 200 вольт.
  • Максимально допустимый постоянный ток стабилизации - Iст.max. Ограничивается величиной максимально допустимой рассеиваемой мощности Рmax, которая, в свою очередь тесно связана с температурой окружающей среды.
  • Минимальный ток стабилизации - Iст.min. Зависит от минимального значения тока, проходящего через стабилитрон. При этом токе должно быть полное сохранение работоспособности устройства. Вольтамперная характеристика стабилитрона между параметрами Iст.max и Iст.min имеет наиболее линейную конфигурацию, а изменение напряжения стабилизации очень незначительно.
  • Дифференциальное сопротивление стабилитрона - rст. Данная величина определяется как отношение приращения напряжения стабилизации на устройстве к малому приращению тока стабилизации, вызвавшему это напряжение (ΔUCT/ ΔiCT).

Параметрический стабилизатор на транзисторе

Работа параметрического стабилизатора на транзисторах почти ничем не отличается от аналогичного устройства на стабилитроне. В каждой схеме напряжение на выходах остается стабильным, поскольку их вольтамперные характеристики затрагивают участки с падением напряжения, слабо зависящим от тока. То есть, как и в других параметрических стабилизаторах, стабильные показатели тока и напряжения достигаются за счет внутренних свойств компонентов.

Падение напряжения на нагрузке будет таким же, как и разность падения напряжения стабилитрона и р-п перехода транзистора. Падение напряжения в обоих случаях слабо зависит от тока, отсюда можно сделать вывод, что выходное напряжение также является постоянным.

Нормальная работа стабилизатора характеризуется наличием напряжения в диапазоне от Uст.max до Uст.min. Для этого необходимо, чтобы и ток, проходящий через стабилитрон, находился в пределах от Iст.max до Iст.min. Таким образом, течение максимального тока через стабилитрон будет осуществляться в условиях минимального тока базы транзистора и максимального входного напряжения. Поэтому транзисторный стабилизатор имеет существенные преимущества над обычным устройством, поскольку значение выходного тока может изменяться в широком диапазоне.

Расчет и проектирование параллельного стабилизатора. Особенности применения. (10+)

Параметрический параллельный стабилизатор

Принцип действия параметрического параллельного стабилизатора основан на том, то сквозь него пропускается фиксированный (или пости фиксированный) ток, заданный источником тока (это очень хорошо) или резистором (это немного хуже). Далее ток разделяется на два русла. Часть тока направляется на нагрузку. Другая часть проходит в обход нагрузки. Сила обходящего тока, а значит и сила тока нагрузки, поддерживается такой, чтобы напряжение на нагрузке равнялось заданному значению. Типичные схемы параллельных стабилизаторов приведены на рисунке.

Типичные схемы параллельных параметрических стабилизаторов

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые.
Обзор схем бестрансформаторных источников питания...

Сверхмощный импульсный усилитель звука. Площади. Вещательный. Звуковой...
Сверхмощный импульсный усилитель звука для озвучивания массовых мероприятий и пр...

Тиристорные включающие, выключающие, переключающие, коммутирующие, ком...
Управление тиристорным силовым ключом с помощью оптрона. Гальваническая развязка...


Как выбрать частоту работы контроллера и скважность для пуш-пульного преобразова...


Как известно, ни одно электронное устройство не работает без подходящего источника питания. В самом простейшем случае, в качестве источника питания может выступать обычный трансформатор и диодный мост (выпрямитель) со сглаживающим конденсатором. Однако, не всегда под рукой есть трансформатор на нужное напряжение. Да и тем более, такой источник питания нельзя назвать стабилизированным, ведь напряжение на его выходе будет зависеть от напряжения в сети.
Вариант решения этих двух проблем – использовать готовые стабилизаторы, например, 78L05, 78L12. Они удобны в использовании, но опять-таки не всегда есть под рукой. Ещё один вариант – использовать параметрический стабилизатор на стабилитроне и транзисторе. Его схема показана ниже.

Схема стабилизатора

VD1-VD4 на этой схеме – обычный диодный мост, преобразующий переменное напряжение с трансформатора в постоянное. Конденсатор С1 сглаживает пульсации напряжения, превращая напряжение из пульсирующего в постоянное. Параллельно этому конденсатору стоит поставить плёночный или керамический конденсатор небольшой ёмкости для фильтрации высокочастотных пульсаций, т.к. при большой частоте электролитический конденсатор плохо справляется со своей задачей. Электролитические конденсаторы С2 и С3 в этой схеме стоят с этой же целью – сглаживание любых пульсаций. Цепочка R1 – VD5 служит для формирования стабилизированного напряжения, резистор R1 в ней задаёт ток стабилизации стабилитрона. Резистор R2 нагрузочный. Транзистор в этой схеме гасит на себе всю разницу входного и выходного напряжения, поэтому на нём рассеивается приличное количество тепла. Данная схема не предназначена для подключения мощной нагрузки, но, тем не менее, транзистор стоит прикрутить к радиатору с использованием теплопроводящей пасты.
Напряжение на выходе схемы зависит от выбора стабилитрона и значения резисторов. Ниже показана таблица, в которой указаны номиналы элементов для получения на выходе 5, 6, 9, 12, 15 вольт.


Вместо транзистора КТ829А можно использовать импортные аналоги, например, TIP41 или BDX53. Диодный мост допустимо ставить любой, подходящий по току и напряжению. Кроме того, можно собрать его из отдельных диодов. Таким образом, при использовании минимума деталей получается работоспособный стабилизатор напряжения, от которого можно питать другие электронные устройства, потребляющие небольшой ток.

Фото собранного мной стабилизатора:


Основным параметром стабилизатора напряжения, по которому оценивают его качество работы, является коэффициент стабилизации

К ст U = (ΔU вх /U вх) / (ΔU вых /U вых).

Простейшим стабилизатором напряжения является параметрический, схема которого представлена на рис. 1.6.

Рис. 1.6. Параметрический стабилизатор напряжения без термокомпенсации

Расчет параметрического стабилизатора обычно сводится к расчету сопротивления балластного резистора R о и выбору типа стабилитрона.

Основными электрическими параметрами стабилитрона являются:

U ст – напряжение стабилизации;

I ст.макс – максимальный ток стабилитрона на рабочем участке вольт-амперной

характеристики;

I ст.мин – минимальный ток стабилитрона на рабочем участке вольт-амперной

характеристики;

R д – дифференциальное сопротивление на рабочем участке вольт-амперной

характеристики.

Методику расчета рассмотрим на примере.

Дано: U вых = 9 В;I н = 10 мА;ΔI н = ± 2 мА;ΔU вх = ± 10%U вх. .

Порядок расчета.

1. По справочнику выбираем стабилитрон типа Д814Б с параметрами

U ст = 9 В;I ст.макс = 36 мА;I ст.мин = 3 мА;R д = 10 Ом.

2. Рассчитаем необходимое входное напряжение по формуле

U вх =n ст U вых,

где n ст – коэффициент передачи стабилизатора.

Для оптимальных условий работы стабилизатора рекомендуется выбирать n ст в пределах от 1,4 до 2.

Примем n ст = 1,6 , тогдаU вх = 1,6 · 9 = 14,4 В.

3. Рассчитаем сопротивление балластного резистора R о

R о = (U вх –U вых) / (I ст +I н).

Ток I ст выбирают из следующих соображений:I ст ≥I н.

При одновременном изменении U вх на величинуΔU вх иI н на величинуΔI н ток стабилитрона не должен выходить за пределыI ст.макс иI ст.мин.

По этой причине обычно выбирают I ст из середины диапазона допустимых значений.

Принимаем I ст = 0,015 А.

Тогда R о = (14,4 – 9) / (0,015 + 0,01) = 216 Ом.

Выберем стандартное значение сопротивления резистора R о по параметрическому ряду Е24 (см. приложение 4).

Принимаем R о = 220 Ом.

Для выбора типа резистора необходимо рассчитать рассеиваемую на корпусе резистора мощность

Р = I 2 R о; Р = (25· 10 -3) 2 · 220 = 0,138 Вт.

Принимаем стандартное значение мощности рассеяния на резисторе 0,25 Вт.

Выбираем тип резистора МЛТ-0,25-220 Ом ± 10 %.

4. Произведем проверку правильности выбора режима работы стабилитрона в схеме стабилизатора напряжения:

I ст.мин = (U вх –ΔU вх –U вых) /Rо – (I н +ΔI н);

I ст.мин = (14,4 – 1,44 – 9) · 10 3 / 220 – (10 + 2) = 6 мА;

I ст.макс = (U вх +ΔU вх –U вых) /Rо – (I н –ΔI н);

I ст.макс = (14,4 + 1,44 – 9) · 10 3 / 220 – (10 – 2) = 23 мА.

Если рассчитанные значения токов I ст.мин иI ст.макс выходят за пределы допустимых значений, то необходимо или выбрать другое значениеI ст, или изменить сопротивление резистораR о, или заменить стабилитрон.

5. Коэффициент стабилизации по напряжению для параметрического стабилизатора определяется по формуле:

К ст = (R о /R д + 1) /n ст,

К ст = (220 / 10 + 1) / 1,6 = 14,3.

6. Выходное сопротивление параметрического стабилизатора напряжения

R вых =R о = 10 Ом.

На рис. 1.7 представлена схема параметрического стабилизатора напряжения с температурной стабилизацией режима работы его основного элемента – стабилитрона.

Для повышения температурной стабильности выходного напряжения в этой схеме последовательно со стабилитроном включены несколько кремниевых диодов.

Температурный коэффициент напряжения (ТКН) диода по знаку противоположен ТКН стабилитрона, однако меньше по модулю. Поэтому для температурной компенсации U ст требуется несколько диодов. Кремниевые стабилитроны, включенные в прямом направлении также могут быть использованы для термостабилизации. Количество термостабилизирующих элементов определяют по отношению модуля ТКН стабилитрона к модулю ТКН элемента (диода). Результат деления округляется до целого числа.

Численные значения ТКН стабилитронов и диодов приведены в справочниках и выражены в %/ о С. Для кремниевых диодов, включенных в прямом направлении ТКН незначительно отличаются друг от друга для разных типов и находятся в пределах

1,4…1,7 мВ/ о С. Для германиевых диодов, например у Д7А – Д7Ж, величина ТКН составляет –1,9 мВ/ о С. Для выполнения расчетов термостабилизации в РГР-1 использовать диод Д7Ж, у которого ТКН составляет –1,9 мВ/ о С.

При этом следует иметь в виду, что при большом количестве термостабилизирующих диодов (три и более) необходимо учитывать прямое падение напряжение на них и динамическое сопротивление. Для диода Д7Ж прямое напряжение составляет 0,5 В, а динамическое сопротивление 2 Ом. Общее напряжение стабилизации определяется при этом как сумма напряжений стабилитрона и диодов, а общее динамическое сопротивление определяется как сумма динамических сопротивлений стабилитрона и диодов.

Расчет такого стабилизатора производится по методике, приведенной выше.

Рис. 1.7. Параметрический стабилизатор напряжения с термокомпенсацией

Примечание:

Последовательность расчета источника вторичного электропитания следующая – сначала выполняется расчет стабилизатора напряжения, затем сглаживающего фильтра и далее - выпрямительной схемы.

Принципиальную электрическую схему устройства выполнить в соответствии с ГОСТ и с учетом структурной схемы (рис 1.1)

Контрольная работа № 2

Расчет усилительного каскада на биполярном транзисторе

по схеме с общим эмиттером



glavpom.ru - Подстанции. Силовая электроника. Экология. Электротехника